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The RATS letter
RATS 4.3 for Macintosh

The wait is finally over! Version 4.3 of RATS for Macintosh
will begin shipping in February. There are two flavors to
choose from: MacRATS �020 for 68020, 68030, and 68040
systems, and MacRATS PPC for PowerMac systems. The
standard MacRATS product (for 68000 systems) has been
discontinued.

The big news here is, of course, the availability of a native
PowerMac version of RATS, which provides exceptional
performance on PowerMac systems. However, both prod-
ucts also include many improvements and new features that
were previously available only in our UNIX and PC versions
(see page 4 for a brief summary). Both packages also include
a new version of the RATSDATA utility program.

Upgrade to Power Mac Version for just $100!
If you have a PowerMac, you�ll want to upgrade to the new
MacRATS PPC. This native PowerMac application runs very
quickly�depending on the specific task, it runs anywhere
from 2.5 to 10 times faster than standard MacRATS 4.0 on a
given PowerMac system. Users with Version 4.0 of either
MacRATS or MacRATS �020 can upgrade to MacRATS
PPC for just $100 (plus shipping outside the US). Users
with Version 3 of MacRATS can upgrade for just $170.

Free Updates to MacRATS �020 4.3
Licensed users of MacRATS 4.0 and MacRATS �020 4.0
are entitled to a free update to MacRATS �020 Version 4.3.
You can order by phone, fax, mail, e-mail, or via our web site.
When ordering, please supply your name, address, phone
number, and RATS serial number. The free update offer will
be available until the release of Version 5 later this year.

Note that MacRATS �020 is designed for 68020, 68030, and
68040 systems with the appropriate math co-processor. It will
run on PowerMac systems, but only if you install a floating
point emulator such as SoftFPU or PowerFPU. Even with
an FPU emulator, the program will run much slower than
MacRATS PPC on such systems, so we strongly encourage
PowerMac users to upgrade to MacRATS PPC.

CATS Cointegration Analysis for Macintosh
MacRATS users who update to 4.3 can also take advantage
of our popular CATS cointegration analysis package. CATS
is a powerful, menu-driven procedure written in the RATS
language by Soren Johansen, Katarina Juselius, and Henrik
Hansen. It can handle a variety of different models and
hypothesis tests, and includes a detailed user�s manual.

The price for a single-user CATS license is just $100. Please
contact Estima for quotes on multi-user licenses.

Markov Switching Models

Markov switching models for time series have become pop-
ular lately, largely as a result of the work of James Hamilton
(See Chapter 22 of his book Time Series Analysis from
Princeton University Press). Some of these models can be
estimated in RATS using the MAXIMIZE instruction.

To start, let�s look at a simple Markov chain. Suppose that
there are two regimes. The probability of moving from state
1 to state 2 is p12, and for moving from state 2 to state 1 is
p21, both unknown. In this simple case, the regime is known
at each time period. Let the state be shown by the dummy
variable REGIME which will be 1 for state 1 and 0 for state 2.

This is a simple enough situation that the maximum likelihood
estimate of p12 is just the fraction of the times that the
system is in state 1 and moves to state 2. However, we�ll
illustrate how to set this up with MAXIMIZE, as more
complex examples require only minor modifications. Com-
plete examples will be available on the �Procedures and
Examples� page of our web site, at www.estima.com.

nonlin p12 p21
frml markov = $
 rp1 = p21*(1-regime{1})+(1-p12)*regime{1},$
 rp2 = (1-p21)*(1-regime{1})+p12*regime{1},$
 pstar = rp1/(rp1+rp2), $
 %if(regime,log(pstar), log(1-pstar))

The MARKOV formula is then estimated using MAXIMIZE.
Note that pstar is the probability of being in state 1. In
this case, it is trivially either p21 or 1-p12. In the full
examples, pstar is put into a data series.

Now we will look at a situation where the regime is indepen-
dent across time and unknown, but where an observable
variable y is governed by different processes in the two
regimes:

In regime 1,  y t x t u t( ) ( ) ( )= + ∗ +a01 a11 1 1

In regime 2,  y t x t u t( ) * ( ) ( )= + +a02 a12 2 2

(Continued on Page 4)
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Gibbs Sampler
RATS was at the forefront in the use of modern Bayesian
techniques in econometrics. Perhaps the first widely used
application of computationally intensive Bayesian methods
in the profession was the Monte Carlo integration procedure
for computing posterior moments of impulse responses.

The Gibbs sampler1 is one of several techniques developed
recently to deal with posterior distributions which not long
ago were considered to be intractable. Monte Carlo integra-
tion for impulse responses is able to work well despite the
large number of parameters in the underlying vector autore-
gression because, with the help of a convenient choice of
prior, it is fairly easy to make draws from the posterior
distribution. Unfortunately, there are very few multivariate
distributions for which this is true. Even in a simple linear
regression model, all it takes is a slight deviation from �con-
venience� in the prior to produce a tangled mess in the
posterior distribution, making direct draws with the basic
toolkit of random uniforms and Normals impossible.

The Gibbs sampler can be brought into play when the param-
eters can be partitioned such that, although an unconditional
draw can�t be obtained directly, each partition can be drawn
conditional on the parameters outside its partition. The
standard result is that if we sequentially draw from the
conditional distributions, the resulting draws are, in the limit,
from the unconditional distribution. Because this is a limit
result, it is common for practitioners to ignore a certain
number of early draws (called the �burn-in�) which might
not be representative of the unconditional distribution.

The most common blocking for the Gibbs sampler is between
the regression parameters and the variance or precision. For
instance, in the Normal linear model

y X u= +β , u X I~ ,N h0 1−d i
with prior β β~ ,N Hp

−1d i  and ν σ 2h  distributed chi-square
with ν  degrees of freedom, the posterior density function is
proportional to:
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then, conditional on h, y and X, β  is Normal with precision
H H X X∗ = + ′h  and mean H H X Xb∗− + ′1 β p hd i  where b is
the OLS estimate, and, conditional on β , y and X,

σ ν β β χ ν2 2+ − ′ −F
H

I
K +y X y Xb g b g b gh T~

Both of the conditional densities are from families from which
draws can be generated easily. To implement this efficiently
in RATS, we need to rewrite pieces of this and pump some
information out of an OLS regression:

1. ′X Xb  and Hβ p  are fixed, and can be calculated in
advance.

2. y X y X− ′ − =β βb g b g
y Xb y Xb b X X b− ′ − + − ′ − =b g b g b g b gβ β
%RSS+ − ′ −b X X bβ βb g b g

The following define the prior:

� s2 is the scale parameter and nu the degrees of freedom
of the prior precision.

� bprior and hprior are the prior mean and precision
for the coefficients.

After the LINREG

compute rssols  = %rss
compute betaols = %beta
compute xxols   = inv(%xx)
compute xyols   = xxols*betaols
compute xyprior = hprior*bprior
compute sdof    = nu + %nobs
compute beta    = betaols
dec vect u(%nreg)

A single pass of the Gibbs sampler for this is

* Draw h conditional on current beta
compute center = nu*s2+rssols + $
                 %qform(xxols,beta-betaols)
compute hu = 2.0*%rangamma(sdof*.5)/center
* Draw beta conditional on h
compute hbeta =hu*xxols+hprior
compute vbeta =inv(hbeta)
compute ubeta =%decomp(vbeta)*(u=%ran(1.0))
compute beta  =vbeta*(hu*xyols+xybeta)+ubeta

Rejection Method

The Gibbs sampler still requires an ability to generate draws
from the conditional distributions. In our example above, this
wasn�t difficult, because it required only draws from Normal
and gamma distributions. It is sometimes necessary to gen-
erate draws from a distribution which can�t be derived as
simple functions of these elementary distributions. One
method which can be used in many univariate cases is the
Rejection method.

The Rejection (or Acceptance-Rejection) method is actually
used within RATS to generate draws from the Normal and
gamma distributions. This method requires little more than
the ability to compute the density function itself.

We�ll look first at a trivial example. Suppose that you need
draws from a Normal(µ σ, 2) truncated to the interval [a,b].
An obvious way to do this is to draw Normal(µ σ, 2) deviates,
then reject any that fall outside [a,b]. The accepted draws
would have the desired distribution, but this process will
be fairly inefficient if the probability of the Normal draw
falling in [a,b] is fairly low.

(Continued on Page 4)

Gibbs Sampler and Other Bayesian Techniques
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New Features in MacRATS 4.3

MacRATS 4.3 includes many new features previously
available only on the PC and UNIX platforms. These
include:

� New instructions for fitting neural network models,
and an instruction for solving linear and quadratic
programming problems.

� Many graphics improvements, including the ability to
place text strings anywhere on a graph, more place-
ment options for keys, more labeling options on
SPGRAPH, simplified handling of two-scale graphs,
and more.

� New instructions including USERMENU  and
INFOBOX, which expand the ability to write interac-
tive, menu-driven, programs in RATS. These features
are used extensively in the CATS cointegration pack-
age, which is now available for Macintosh systems.

� More than a dozen new functions, including  functions
for extracting elements from an array, extracting char-
acters from a string, and computing inverse Normal
and chi-squared distributions.

RATS Version 4.3 Prices

Contact Estima for prices on UNIX and Linux versions,
network licenses, upgrade paths not shown below, or any
other questions.

Update/Upgrade: To: Price:
MacRATS �020  ver 4.0 MacRATS PPC 4.3 $100.00
MacRATS �020  ver 4.0 MacRATS �020 4.3 No Charge
MacRATS   ver. 4.0 MacRATS PPC 4.3 $100.00
MacRATS   ver. 4.0 MacRATS �020 4.3 No Charge
MacRATS �020  ver 3.xx MacRATS PPC 4.3 $170.00
MacRATS �020  ver 3.xx MacRATS �020 4.3 $70.00
MacRATS   ver 3.xx MacRATS PPC 4.3 $170.00
MacRATS   ver 3.xx MacRATS �020 4.3 $70.00

WinRATS-32   4.2x WinRATS-32 4.3 $25.00
WinRATS Plus   4.2x WinRATS-32 4.3 $50.00
WinRATS Plus    4.2x WinRATS Plus 4.3 $25.00
WinRATS    4.2x WinRATS-32 4.3 $100.00
WinRATS    4.2x WinRATS 4.3 $25.00
RATS386    4.x WinRATS-32 4.3 $80.00
RATS386    4.x WinRATS Plus 4.3 $50.00
RATS386    4.2x RATS386 4.3 $25.00
RATS386    4.0,4.1 RATS386 4.3 $40.00
PC RATS    4.x WinRATS-32 4.3 $200.00
PC RATS    4.x WinRATS Plus 4.3 $150.00
PC RATS    4.x WinRATS 4.3 $100.00
PC RATS    4.x RATS386 4.3 $120.00

Prices for New Copies of RATS and CATS
MacRATS PPC $500.00 WinRATS-32 $500.00
MacRATS �020 $400.00 WinRATS Plus $450.00
RATS386 $420.00 WinRATS $400.00
CATS (PC or Mac) $100.00

Walter Enders� RATS Handbook and Textbook
Walt Enders� popular Applied Economic Time Series text-
book and the accompanying RATS Handbook are still avail-
able directly from Estima. The handbook is $30 ($27.50 when
ordered with another Estima product). The textbook is $65.

Tax and Shipping Costs
Illinois customers add 8.5% sales tax. Prices include UPS
Ground shipping. Additional charges apply for 2nd Day and
Next Day Air shipments, and shipments outside the US.

Year 2000 Update

As previously noted,  RATS versions 4.0 and later are fully
Year 2000 compliant. Be aware, however, that RATS does
assume that 2-digit years refer to the 1900�s. Thus, you must
be sure to use 4-digit year references in any programs and
data sets that involve data extending before 1900 or after 1999.

Also, please be aware that the Holiday adjustments available
as an option in the EZ-X11 seasonal adjustment program are
not Year 2000 compliant. These adjustments are based on
tables used in the original Census X11 program, and are only
valid through 1999. The X11 add-on module available for the
UNIX and Windows versions of RATS has been updated to
be Year 2000 compliant (contact Estima if you want to verify
that your version of the X11 module is Y2K compliant). Stay
tuned for news on an EZ-X11 update.

Order Via the Web

The on-line order form on our web site provides a fast and
easy way to order RATS, CATS, and other Estima products.
We�ve recently upgraded the site to allow you to order up to
5 new products in a single order. You can also include one
update/upgrade order on the same form.

The system runs on a secure web server to keep transactions
safe. And, if your browser supports JavaScript (most do), the
order system will automatically compute and display informa-
tion such as update prices and shipping costs. To order, just
go to www.estima.com and click on �Order via the Web�.

Dial-Up Bulletin Board is History

Our aging BBS host system recently suffered a catastrophic
failure. With the advent of the Web and internet e-mail, traffic
on the BBS had been practically nonexistent for many months.
And so, with a touch of melancholy, we�ve decided not to
bring the BBS up on another system. Thanks to all who made
use of the BBS over the years, and we hope that you find our
web site and the RATS mailing list to be suitable replacements.
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An alternative is to draw a random number x from Uniform(a,b).
Also draw a random number z from U(0,1). Compare z with
the ratio between f xN µ σ, 2e j  and the maximum that
f N • µ σ, 2e j  achieves on [a,b]. If z is less, accept x; if not,

reject it. This trims away the uniform draws to match the shape
of the Normal. This will be more efficient if the density
function is fairly constant on [a,b], so that the comparison
ratio is close to one and almost all draws are accepted.

In general, in order to generate draws from a distribution with
(bounded) density f, it is necessary to have a comparison
distribution with density g from which draws can be gener-
ated more easily and which is non-zero wherever f is non-
zero. In fact, we don�t even need a complete density function
for f: its kernel is enough. In our first �method� for drawing
from the truncated Normal, g was the same as f, just not
truncated. In the second, g is I a b,

 (we can also work with
just the kernel of g).

A key value which we can compute in advance of making our
draws is c f g= 1 maxb g  where the max is computed over
the support of f. In method one, this is just 1. In method
two, it is the reciprocal of the maximum that f N  achieves on
[a,b]. Given the draw x from the density g, accept with
probability c f x g x( ) ( ) .

In method one, f x g x( ) ( )  is 1 on [a,b] and 0 outside of it,
allowing us to avoid the need for a second draw. For the
second, this works out to f xN Kc h  over the max, just as we
indicated.

What is most important for this to be done efficiently is that
g have �tails� at least as fat as the target density f. For
instance, the Cauchy is a convenient comparison distribution
for many unimodal distributions on the real line. When we
draw from the Cauchy, we get a small percentage of very
extreme draws. However, if f is a thin-tailed distribution,
f g  will be very small out there, and the extreme draws will

be rejected. In other words, we thin out the Cauchy tails by
rejecting most tail draws. If, however, f g  is quite large in the
tails, the only way we can �thicken� the tails is by accepting
the tail draws and rejecting most of the draws near the mode.

Rejection Method Example
We cited above a couple of simple ways to draw from a
truncated Normal. Each method has intervals over which it
would be highly inefficient. And the use of a Uniform as the
comparison function isn�t even possible unless the interval
is truncated at both ends. We show here how to draw
truncated Normals using a truncated logistic as the compar-
ison distribution.

A logistic with location parameter a and scale parameter b has
distribution function

Assume that, conditional on x
1
 and x

2
, u

1
 and u

2
 are dis-

tributed Normal ,0 2σd i independently both contemporane-
ously and across time.

Let p be the (unknown) unconditional probability of the
process being in state 1 at any time period. The likelihood
comes from the formula

   f y parameters p f y parametersc h c h= ∗ +, state 1

       1− ∗p f y parametersb g c h, state 2

Bayes� formula gives the post-data probability of being in
state 1 as

p f y parameters

f y parameters

∗ , state 1c h
c h

A (set of) formulas to estimate this model is:

nonlin p a01 a02 a11 a12 sigma
frml reg1 = y-a01-a11*x1
frml reg2 = y-a02-a12*x2
frml mixing = $

f1=%density(reg1{0}/sigma)/sigma , $
f2=%density(reg2{0}/sigma)/sigma , $
rp1=f1*p, rp2=f2*(1-p), $
pstar=rp1/(rp1+rp2), log(rp1+rp2)

We now combine the two types of models. The state may shift
from period to period following the Markov model from the
first example. If p* is our estimate of the probability of
being in state 1 based upon data through t, then the (pre-
data) probability of state 1 in period t+1 is

p21 p121 1− + −p p* *b g b g
The set up for this model is:

nonlin p12 p21 a01 a02 a11 a12 sigma
frml markov = $
 f1  = %density(reg1{0}/sigma)/sigma, $
 f2  = %density(reg2{0}/sigma)/sigma, $
 rp1 = f1*(p21*(1-pstar{1})+ $
         (1-p12)*pstar{1}), $
 rp2 = f2*((1-p21)*(1-pstar{1})+ $
         p12*pstar{1}), $
 pstar = rp1/(rp1+rp2) , $
 log(rp1+rp2)

It�s possible to extend these to three or four states with some
help from matrix operations. The worked example in Hamil-
ton�s book expands out to 32 states and is beyond the realistic
capabilities of the current version of RATS. We�re expecting
a future release to add some new features to cure this.

Visit Us at the ASSA Show

We invite you to visit us in booth number 158 at this year�s
ASSA show in New York. We will be demonstrating the new
versions of MacRATS, along with many other products. We
hope you�ll stop by and say hello.

Gibbs Sampler (continued from page 2)Markov (continued from page 1)

(Continued on Page 5)
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G x a b e x a b; , .b g e jb g= + − −10 1

and density function

g x a b e b ex a b x a b; ,b g e jb g b g= + +− − − −1 1
2

It has a shape very similar to the Normal, but has an invertible
distribution function. This is particularly convenient here
because drawing a truncated version of it requires only
drawing a truncated Uniform and inverting. If we�re looking
for efficient draws, what choice should we make for the
parameter b? A result in Geweke2 shows that the optimal
choice is the one which minimizes the maximum ratio between
the Normal density and logistic. This is b = .648, which
produces a maximum ratio at x = 1.0.

The core of the rejection method is extremely simple to
program and is just a few lines long. Most of the work is the
�human time� needed to figure out a good comparison
function and to calculate the factor c. As with any such
exercise, you need to decide how much to substitute raw
computing power for ingenuity. With the speed of today�s
computers, a rejection algorithm which you can put into
operation in a few minutes, but which rejects 90% of draws,
is likely to get your work done faster than a finely tuned
algorithm which rejects 10% of draws but takes a day�s
effort to get ready.

If you can�t determine the value of c using calculus, the RATS
function FIND can come in handy. For instance, to calculate
c for the Normal versus logistic, we did the following:

nonlin xm
compute sfac=.647
compute xm=0.0,value=0.0
find max value
 compute value = -.5*xm**2+xm/sfac $
    +log(sfac)+2*log(1+exp(-xm/sfac))
end find
disp value

This finds the maximum of log f gb g . By varying sfac, we
were able to find the minimizing value for the logistic scale
parameter.

Importance Sampling
An idea similar to the rejection method is known as impor-
tance sampling. Both use a convenient density which (one
hopes) has a similar shape to the true density. In importance
sampling, this density is called the importance function.
The difference is that the rejection method generates draws
from the true density by rejecting some, while importance
sampling uses all the draws generated but weights the draws
when computing sample moments. If f is the true density
and g is the importance function, importance sampling is
based upon the fact that

E h x( )b g = z h x f x dx( ) ( )

= z h x f x g x g x dx( ) ( ) ( ) ( )b g
= z h x w x g x dx( ) ( ) ( )

where the weight function w x f x g x( ) ( ) ( )= .

If x
1
,...,X

N
 are draws from the density g, the Monte Carlo

estimate of E h x( )b g  is

1

1

N h x w x

N w x
i i

i

b g
b g

( ) ( )

( )
∑

∑
In cases where the function(s) whose moments are being
computed are very complicated functions of the distribution
from which you are drawing, importance sampling has the
drawback that you must go through that computation for
every draw, no matter how low its weight.

For instance, when we were first developing the Monte Carlo
integration procedure for impulse responses (see example
10.1 in the RATS manual), we used importance sampling
for the VAR coefficients. For each draw, it is necessary to
compute impulse responses and tabulate the first and second
moments. That�s quite a bit of work when many of the draws
had weights less than .10.

1 Gelfand and Smith (1990). �Sampling-Based Approaches
to Calculating Marginal Densities�, JASA, pp. 398-409

2 Geweke (1992). �Priors for Macroeconomic Time Series
and Their Application�, Institute for Empirical Macro-
economics Discussion Paper No. 64, Federal Reserve
Bank of Minneapolis.

Gibbs Sampler (continued from page 4)

(Continued on Page 6)

Basic Random Draw Toolkit

For many distributions, you can take draws without resorting
to the relatively complex techniques described above. Here,
we describe the very useful inverse and direct methods, and
techniques for taking draws from multivariate distributions.

Inverse Method
Random variables with an invertible cumulative distribution
function are easy to draw by just applying the inverse to
a uniform (0,1) draw. For instance, an exponential with
parameter (λ ) has distribution function 1− −e x λb g , x ≥ 0. If
y is a U(0,1) draw, then solve y e x= − −1 λb g  to get the draw
x y= − −λ log( )1 . Note that ( )1− y  can be replaced with y
because ( )1− y  is also U(0,1).

The following code generates a vector of 100 draws from an
exponential with mean L:

DEC VECT DRAWS(100)
EWISE DRAWS(I)=-L*LOG(%UNIFORM(0,1))
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Random Draw Tookit (continued from page 5)

and this generates Cauchy deviates:

EWISE DRAWS(I) = %TAN(%PI/2.0*%UNIFORM(-1.0,1.0))

Direct Method
Many random variables can be obtained by some function of
Normal, uniform and gamma random variables, as shown
below.

Chi-Squared with NU degrees of freedom:

EWISE DRAWS(I) = 2.0*%RANGAMMA(0.5*NU)

For t (ratio of Normal to chi-square with NU degrees of
freedom divided by its degrees of freedom):

EWISE DRAWS(I) = 0.5*NU*%RAN(1.0)/ $
                 %RANGAMMA(0.5*NU)

Beta α β,b g , using the convention that the kernel is
p p( ) ( )α β− −−1 1

1b g :

EWISE DRAWS(I) = 1.0/(1+%RANGAMMA(B)/ $
                 %RANGAMMA(A))

Note that if you try to write this as

%RANGAMMA(A)/(%RANGAMMA(A)+%RANGAMMA(B))

you�ll be in for a bit of a shock, because the two values of
%RANGAMMA(A) will be different (RATS takes a separate
draw for each function call).

Multivariate Distributions
To draw a multivariate Normal with mean vector X and
covariance matrix S, it is necessary first to get a factor of
the S matrix: a matrix P such that PP S′ = . Any such factor
will do. The simplest one to obtain with RATS is the Choleski
factor, which you can compute using the function %DECOMP.

The following code draws a single vector (UDRAW) from this
distribution. If, as is typical, the actual draws would be inside
a loop, the first three instruction lines can be outside of it:

DEC RECT P
DEC VECT XDRAW(%ROWS(S)) UDRAW(%ROWS(S))
*
COMPUTE P=%DECOMP(S)
COMPUTE UDRAW=X+P*(UDRAW=%RAN(1.0))

A multivariate Student (t) starts as a multivariate Normal
draw, but is then divided through by a chi-square divided
by its degrees of freedom. Change the final line in the code
above to

COMPUTE UDRAW = X + $
                (.5*NU/ %RANGAMMA(0.5*NU))* $
                P*(UDRAW=%RAN(1.0))


