
Chapter 3

Error Bands

The IRF is a function of the VAR coefficients. Since the coefficient estimates

are subject to sampling variation, the IRF is also subject to that. While the

error decomposition can tell you something about the economic significance of

responses (whether they actually produce any significant movement in other

variables), that doesn’t tell you whether a response is statistically significant.

Three methods have been proposed to compute some form of error bands for

IRF’s:

• Monte Carlo integration

• Bootstrapping

• Delta method

Macroeconomics and Reality didn’t include error bands. The first paper to

present them was Sims (1980a) which used Monte Carlo integration (though

there really aren’t technical details in that paper). The overwhelming major-

ity of subsequent papers which have presented error bands have used Monte

Carlo methods, and it’s the one we recommend for many reasons. However,

we’ll present the alternatives as well.

3.1 Delta method

Luetkepohl (1990) derives the asymptotic distribution for impulse response

functions and variance decompositions for estimated VAR’s. This is a special

case of the more general “delta method”. The underlying result is that if

√
T
(

θ̂ − θ
)

d−→ N (0,Σθ)

and if f(θ) is continuously differentiable, then, by using a first order Taylor

expansion and some standard results, we get:

√
T
(

f(θ̂)− f(θ)
)

d−→ N
(

0, f ′(θ̂)Σθf
′(θ̂)′

)

The delta method is fairly commonly used in conventional maximum likelihood

estimation, primarily when a particular parameterization is used for computa-

tional purposes. For instance, it’s sometimes convenient to estimate a variance

29

Error Bands 30

in log form, κ = log σ2. 1 The delta method in that case gives you exactly the

same result (subject to minor roundoff) estimating σ2 indirectly as it would if

you could estimate it directly.

In this case, however, the IRF isn’t a different parameterization of the VAR.

The finite lag VAR corresponds to an infinite lag IRF, and there might not even

be a convergent moving average representation if there are unit roots. When

employed in this case, the delta method has two main problems:

• The f functions of interest are rather complicated functions of the un-

derlying VAR parameters. While there are convenient recursive methods

to calculate them, they are still quite different for IRF’s compared with

forecasts compared with error decompositions. By contrast, Monte Carlo

integration and bootstrapping require just one sampling technique for all

applications.

• The f functions are highly non-linear at longer horizons and, in practice,

the VAR coefficients themselves aren’t all that precisely estimated. As

a result, the linear expansion on which these are based is increasingly

inaccurate. This is discussed on page 1125 of Sims and Zha (1999).

Although we don’t recommend using this, it still is somewhat instructive to

see how the calculation can be organized. If you try to write out directly the

h step response, and linearize it, you’ll face a daunting task. Even as low as

h = 6, you will have 15 terms with products of up to six of the Φ matrices of lag

coefficients. Instead, it’s more convenient to write the VAR in the one lag (state

space) form:










Yt

Yt−1

...

Yt−p+1











=











Φ1 Φ2 . . . Φp

I
. . .

I





















Yt−1

Yt−2

...

Yt−p











+











εt
0
...

0











where

A ≡











Φ1 Φ2 . . . Φp

I
. . .

I











is zero everywhere except the first m rows, and the block of identity matrices

trailing below the diagonal. With this notation, we can compute responses to

1Nonlinear parameters with values very close to zero can cause problems for numerical

differentiation and for convergence checks in standard optimization software. Taking logs

changes the possibly troublesome value of 10−6 to roughly -13.

Error Bands 31

εt at any horizon h by:










Yt+h

Yt+h−1

...

Yt+h−p+1











= A
h−1











εt
0
...

0











The derivative of A with respect to any VAR coefficient is quite simple, since

it’s made up of copies of them in the first m rows. The derivative of Ak with

respect to any variable θ can be built recursively from

∂Ak

∂θ
=

∂Ak−1

∂θ
A+A

k−1∂A

∂θ

The response at step h to shock εt will be the first m rows of A
h−1 times εt.

That’s the function to which we apply the delta method.

The A matrix for an (already estimated) VAR can be constructed easily using

the function %MODELCOMPANION(model). Note also that this doesn’t include

any deterministic regressors like the constant. It’s useful for analyzing the

dynamics of the endogenous variables, but doesn’t have enough information

for actually working with data. The companion matrix has the coefficients in a

different order from the one in which they are put into the equations,2 so the

procedure for computing the asymptotic variance has to allow for that.

This adds the calculation of the delta method error bands to Example 2.1. The

procedure @VARIRFDelta computes the 3 × 3 covariance matrix for the re-

sponses at each horizon examined. Since consumption is the third variable in

the system, we want the 3,3 element of that for the variance of the response.

impulse(model=varmodel,steps=8,shock=||0.0,1.0,0.0||,$

noprint,results=toincome)

*
dec series upper lower

do h=1,7

@VARIRFDelta(model=varmodel,h=h,shock=||0.0,1.0,0.0||) covxx

set upper h+1 h+1 = toincome(3,1)+sqrt(covxx(3,3))*2.0

set lower h+1 h+1 = toincome(3,1)-sqrt(covxx(3,3))*2.0

end do h

graph(nodates,number=0,footer=$

"Responses of consumption growth to a shock in income") 3

toincome(3,1)

upper

lower

2The coefficients in the estimated VAR are blocked by variable, not by lag, so all lags of a

single variable are in consecutive locations.

Error Bands 32

3.2 Bootstrapping

By bootstrapping, we mean a simulation technique which involves resampling

the actual data, or something derived from it (such as residuals). There are a

number of special issues that arise in bootstrapping with (correlated) time se-

ries data. You can’t just resample the data since that would break the time se-

quencing between the dependent variables and their lags. The block bootstrap

samples the data in time blocks, so there are only occasional data points (at the

boundaries between blocks) which are subject to sequencing issues. However,

choosing a proper block size can be a bit tricky with highly persistent data.

The most common form of bootstrapping used with VAR’s is known as the para-

metric bootstrap. This shuffles the residuals, and rebuilds the data using the

estimated VAR model.

The “shuffling” part is done with the help of the RATS instruction BOOT. This

does not, itself, do the resampling; it merely builds the index used in resam-

pling. In order to maintain the contemporaneous relationship among the resid-

uals, they need to be sampled together.

The two procedures @VARBootSetup and @VARBootDraw can be used to do

most of the work.3 @VARBootSetup creates a second parallel system for the

resampled data; there’s not much in it that will be of great interest unless you

want to learn how to manipulate models and equations as “symbols”. However,

it’s useful to see the workings in @VARBootDraw. These are the commands that

create the resampled residuals:

boot entries rstart rend

do i=1,nvar

set udraws(i) rstart rend = resids(i)(entries(t))

end do i

As mentioned above, BOOT merely generates the index on entries needed for do-

ing the resampling. What you do with that will depend upon the situation. This

particular use of it will generate a SERIES of INTEGERS drawn with replace-

ment from the range RSTART to REND. Here, we need to create a rearranged

set of shocks (called UDRAWS) over that range, keeping residuals from a given

time period together. RESIDS is the VECT[SERIES] of residuals created by

ESTIMATE on the original model. UDRAWS is a VECT[SERIES] being created.

The SET instruction starts with entry RSTART. It looks up the number in the

ENTRIES series corresponding to RSTART and takes the data out of component

i of RESIDS for that entry. It will use the same entry number of each of the

series. This is then repeated for each entry up to REND.

forecast(paths,model=model,from=rstart,to=rend,$

results=%%VARResample)

udraws

3 Both are in the file named VARBootSetup.src, so when you use it, you automatically

pull in the @VARBootDraw procedure.

Error Bands 33

This rebuilds the data with the rearranged shocks. This uses the original

model, and the original pre-sample data.4 The PATHS option allows the in-

put of a complete sequence of shocks into the set of forecasts. If we used

RESIDS instead of UDRAWS on the supplementary card, we would rebuild (ex-

actly) the original data. The generated data goes into the VECT[SERIES]

%%VARResample, which is used as the dependent variables in the parallel sys-

tem.

Because the remainder of the code is almost the same as Monte Carlo integra-

tion, we’ll cover it later.

3.3 Monte Carlo Integration

Monte Carlo integration is by far the most common method used to assess the

statistical significance of the results generating indirectly from the VAR, such

as IRF’s and FEVD’s. This assumes a Normal likelihood for the residuals. The

posterior distribution for Σ and the VAR lag coefficients under the standard

“flat” prior for a multivariate regression model is derived in Appendix B. The

distribution of any function of those can be generated by simulation. We can

approximate the mean, variance, percentiles, or whatever, from any function

of interest by computing those across a large number of simulations from the

posterion.

The ESTIMATE instruction defines the following things that we will need in

order to produce draws

• The model itself (the equations and their coefficients)

• The covariance matrix of residuals as %SIGMA

• The number of observations as %NOBS

• The number of regressors per equation as %NREG

• The number of regressors in the full system as %NREGSYSTEM

• The (stacked) coefficient vector as %BETASYS

• The regression (
∑

x′txt)
−1

matrix as %XX

• The number of equations in the system as %NVAR

So how do we get a draw from the posterior for {Σ, β}? First, we need to

draw Σ from its unconditional distribution. Its inverse (the precision matrix

of the residuals) has a Wishart distribution, which is a matrix generalization

of a gamma. See Appendix A.2 for more on this. To draw Σ, we need to use

%RANWISHARTI which draws an inverse Wishart. It takes two inputs: one is a

factor of the target covariance matrix, the other the degrees of freedom. The

4 It’s also possible to randomly select a p entry block from the data set to use as the pre-

sample values, in case the original data aren’t representative. That rarely seems to be done in

practice.

Error Bands 34

scale matrix for the Wishart is
(

T × Σ(B̂)
)

−1

. The quickest way to factor a ma-

trix is the Choleski factor, which is done with the %DECOMP function. So we can

get the needed factor and the degrees of freedom using the VAR statistics with:

compute fwish =%decomp(inv(%nobs*%sigma))

compute wishdof=%nobs-%nreg

The draw for Σ is then done by

compute sigmad =%ranwisharti(fwish,wishdof)

Conditional on Σ, the (stacked) coefficient vector for the VAR has mean equal

to the OLS estimates and covariance matrix:

Σ⊗
(

∑

x′txt

)

−1

(3.1)

While this is potentially a huge matrix (6 variables, 12 lags + constant is 432×
432), it has a very nice structure. Drawing from a multivariate Normal requires

a factor of the covariance matrix, which would be very time consuming at that

size.5 Fortunately, a factor of a Kroneker product is a Kroneker product of

factors. And since the second of the two factors depends only on the data, we

can calculate it just once.

compute fxx =%decomp(%xx)

compute fsigma =%decomp(sigmad)

The random part of the draw for β can be done with:

compute betau =%ranmvkron(fsigma,fxx)

%RANMVKRON is a specialized function which draws a multivariate Normal from

a covariance matrix given by the Kroneker product of two factors. We need to

add this to the OLS estimates to get a draw for the coefficient vector. There are

several ways to get this, but since it gives us what we need directly, we’ll in-

stead use %MODELGETCOEFFS. The MODEL data type has a large set of functions

which can be used to move information from and to the model. The two most

important of these are %MODELGETCOEFFS and %MODELSETCOEFFS, which get

and set the coefficients for the model as a whole. See the chapter’s Tips and

Tricks (Section 3.4).

compute betaols=%modelgetcoeffs(varmodel)

The following puts the pieces together to get the draw for the coefficients.

compute betadraw=betaols+betau

5 The biggest calculation in estimating that size model is inverting a 73 × 73 matrix. In-

version and factoring both have number of calculations of order size3, so factoring the larger

matrix would take over 200 times as long as inverting the smaller one.

Error Bands 35

For most applications, you can use the MCVARDoDraws procedure, or a mi-

nor adaptation of it. If you take a look at it, you’ll see that it has a minor

refinement—it uses what’s known as antithetic acceleration. This is something

that can’t hurt and might help with the convergence of the estimates. On the

odd draws, a value of BETAU is chosen as described above. On the even draws,

instead of taking another independent draw, the sign flip of BETAU is used

instead. Of course, the draws are no longer independent, but they are indepen-

dent by pairs, so the laws of large numbers and central limit theorems apply

to those. However, if a function of interest is close to being linear, the BETAU

and -BETAU will nearly cancel between the odd and even draws, leaving a very

small sampling variance between pairs. For IRF components, the efficiency

gain generally runs about 80%.

Once we have the draw for the coefficients, we reset them in the model with:

compute %modelsetcoeffs(model,betadraw)

One major advantage Monte Carlo integration has over the delta method is

that once we have a draw for the coefficients, we can evaluate any function of

those using the standard instructions, the same as we would for the OLS esti-

mates. However, we do need to keep quite a bit of information organized. A

full set of IRF’s out to horizon H will have m2H values for each draw. Since

various procedures can produce simulated sets of responses for many draws,

we’ve set these up to produce them in a consistent manner, so they can be pro-

cessed by the same graphing procedure. This is done with a global VECT[RECT]

called %%RESPONSES. Each element of the VECTOR corresponds to a draw. The

impulse responses are then stuffed into a RECT. Ideally that would be three

dimensional (variable x shock x horizon), but RATS doesn’t support that, so

they’re saved as (variable x shock) x horizon.

In MCVARDoDraws, the impulse responses are calculated with:

impulse(noprint,model=model,factor=fsigmad,$

results=impulses,steps=steps)

This does Choleski factor orthogonalization. Note that because the covariance

matrix isn’t fixed, the shocks themselves will change, so even the impact re-

sponses will have some uncertainty (other than the ones forced to be zero). If

you want to do unit shocks, the only change you make is to replace the FACTOR

option with FACTOR=%IDENTITY(NVAR). We would suggest that you make a

copy of the original MCVarDoDraws before making a change like that.

The options for MCVARDoDraws are:

• MODEL=model to analyze [required]

• STEP=number of response steps[48]

• DRAWS=number of Monte Carlo draws[1000]

• ACCUMULATE=list of variables (by position) to accumulate [none]

Error Bands 36

In the example in this section, this is

@MCVARDoDraws(model=varmodel,draws=2000,steps=8)

That’s all we need to do to generate the draws. What about the post-processing?

Here, we use the procedure @MCGraphIRF, which takes the set of responses in

the %%responses array and organizes them into graphs. This has quite a few

options for arranging and labeling the graphs. In our case, we’re doing the

following:

@mcgraphirf(model=varmodel,$

shocks=||"Investment","Income","Consumption"||,$

center=median,percent=||.025,.975||,$

footer="95% Monte Carlo bands")

This renames the shocks (otherwise, they would have the less descriptive names

of the variables in the model), uses the median response as the representative

and puts bands based upon the 2.5% and 97.5% percentiles of each. You can

also do upper and lower bounds based upon a certain number of standard de-

viations off the central value—that’s done with the STDERRS option. Although

one or two standard error bands around the IRF have been the norm for much

of the past thirty years, percentiles bands give a better picture in practice.

3.4 RATS Tips and Tricks

The function %CLOCK

%clock(draw,base) is like a “mod” function, but gives values from 1 to base,

so %clock(draw,2) will be 1 for odd values of draw and 2 for even values.

The %MODEL function family

A MODEL is an object which organizes a collection of linear equations or formu-

las. The family of functions with names beginning with %MODEL take informa-

tion out of and put it into a MODEL. These are all included in the Model category

of the Functions wizard.

The most important of these apply to the case where the model is a set of

linear equations like a VAR. For those, you can get and reset the coefficients of

all equations at one time:

%modelgetcoeffs(model) returns a matrix of coefficients, with each column

giving the coefficients in one of the equations.

%modelsetcoeffs(model,b) resets the coefficients of all equations in the

model. The input matrix b can either have the same form as the one

returned by %modelgetcoeffs (one column per equation) or can be a

single “vec’ed” coefficient vector, with equation stacked on top of equation.

Error Bands 37

%modellabel(model,n) returns the label of the dependent variable for the

nth equation in the model. This can be used to construct graph labels (for

instance) in a flexible way.

Error Bands 38

Example 3.1 Error Bands by Delta Method

open data e1.dat

calendar(q) 1960

data(format=prn,org=columns,skips=6) 1960:01 1982:04 invest income cons

*
set dinc = log(income/income{1})

set dcons = log(cons/cons{1})

set dinv = log(invest/invest{1})

*
system(model=varmodel)

variables dinv dinc dcons

lags 1 2

det constant

end(system)

estimate(sigma) * 1978:4

*
impulse(model=varmodel,steps=8,shock=||0.0,1.0,0.0||,$

noprint,results=toincome)

*
dec series upper lower

do h=1,7

@VARIRFDelta(model=varmodel,h=h,shock=||0.0,1.0,0.0||) covxx

set upper h+1 h+1 = toincome(3,1)+sqrt(covxx(3,3))*2.0

set lower h+1 h+1 = toincome(3,1)-sqrt(covxx(3,3))*2.0

end do h

graph(nodates,number=0,footer=$

"Responses of consumption growth to a shock in income") 3

toincome(3,1)

upper

lower

Error Bands 39

Example 3.2 Error Bands by Bootstrapping

open data e1.dat

calendar(q) 1960

data(format=prn,org=columns,skips=6) 1960:01 1982:04 invest income cons

*
set dinc = log(income/income{1})

set dcons = log(cons/cons{1})

set dinv = log(invest/invest{1})

*
system(model=varmodel)

variables dinv dinc dcons

lags 1 2

det constant

end(system)

estimate(sigma,resids=resids) * 1978:4

*
@VARBootSetup(model=varmodel) bootvar

*
compute rstart=%regstart()

compute rend =%regend()

*
compute bootdraws=2000

compute nvar =3

compute nsteps=8

declare vect[rect] %%responses

dim %%responses(bootdraws)

declare rect[series] impulses(nvar,nvar)

declare vect ix

*
infobox(action=define,progress,lower=1,upper=bootdraws) $

"Bootstrap Simulations"

do draw=1,bootdraws

@VARBootDraw(model=varmodel,resids=resids) rstart rend

*

* Estimate the model with resampled data

*
estimate(noprint,noftests)

impulse(noprint,model=bootvar,factor=%identity(3),$

results=impulses,steps=nsteps)

*

* Store the impulse responses

*
dim %%responses(draw)(nvar*nvar,nsteps)

ewise %%responses(draw)(i,j)=ix=%vec(%xt(impulses,j)),ix(i)

infobox(current=draw)

end do draw

infobox(action=remove)

*
@mcgraphirf(model=varmodel,center=median,percent=||.025,.975||,$

shocks=||"Investment","Income","Consumption"||,$

footer="95% other-percentile bootstrap bands")

Error Bands 40

Example 3.3 Error Bands by Monte Carlo

open data e1.dat

calendar(q) 1960

data(format=prn,org=columns,skips=6) 1960:01 1982:04 invest income cons

*
set dinc = log(income/income{1})

set dcons = log(cons/cons{1})

set dinv = log(invest/invest{1})

*
system(model=varmodel)

variables dinv dinc dcons

lags 1 2

det constant

end(system)

estimate(sigma,resids=resids) * 1978:4

*

* This uses a specialized MCVARDoDraws procedure which does unit shocks

* rather than Choleski shocks.

*
source mcvardodrawsunit.src

@MCVARDoDraws(model=varmodel,draws=2000,steps=8)

@mcgraphirf(model=varmodel,center=median,percent=||.025,.975||,$

shocks=||"Investment","Income","Consumption"||,$

footer="95% Monte Carlo bands")

