
Chapter 9

Unit Root Testing

Despite over three decades of applied work aimed at determining whether unit

roots exist in important macroeconomic variables, the question remains open in

many cases. It’s extremely difficult with a single time series of limited length to

tell the difference between the permanent response to a shock implied by a unit

root, and a response with a half-life of 20 quarters (dominant root roughly .97).

We can’t simply get more data by extending the front end of the data set, as the

results from the literature on unit root testing and structural breaks show that

breaks can cause false acceptances of unit roots. As in other cases, panel data

can offer an alternative way to bring more data to bear on a questions. If we

can’t get a longer time span from one country, what about doing joint inference

on multiple countries?

The general structure used by most (though not all) panel unit root testing

procedures is:

∆yit = ρiyi,t−1 +

pi∑

l=1

φi,l∆yi,t−l + αidit + εit (9.1)

where the dit are the deterministic components. ρi = 0 means the y process has

a unit root for individual i, while ρi < 0 means that the process is stationary

around the deterministic part.

There have been quite a few possible procedures which have been proposed for

testing unit roots in panel data. As part of the decision as to which to employ,

we have to deal with the following questions:

1. What is the null hypothesis? In most cases, that will be unit root for all

individuals.

2. What is the alternative?

3. What’s heterogeneous and what (if anything) is homogeneous?

4. How do we deal with the small sample effects?

Item 2 is uninteresting in a single time series—if the null is unit root, the

alternative is a stationary dominant root. In a panel setting, however, the

alternative can be a single common dominant stationary root, or heterogeneous

stationary roots, or even the rather vague “not all unit roots” (that is, some

could have unit roots, but not all do).

76



Unit Root Testing 77

Regarding item 3, the testing procedures almost uniformly allow the short-run

dynamics (the lag polynomial in ∆yi,t) to differ among individuals, not just in

coefficients, but also in the number of lags pi. Because differing values of pi
mean different samples, the testing procedures need to allow for unbalanced

samples. The coefficients on deterministic variables and the variance of εit
will also generally be allowed to vary, which means that almost everything

other (perhaps) than ρi will be heterogeneous. It’s important to note that there

are many perfectly reasonable ways to choose the lag length pi which won’t

necessarily give the same result, particularly when applied to multiple short

time series. As a result, there won’t be a unique “correct” value for any test

which relies upon lag pruning. This is also true if a test depends upon a long-

run variance, as the value will depend upon the lag window chosen.

The small sample effect is embedded in the Dickey-Fuller and other such test

statistics on single time series. A different calculation will be needed for each

form of the test using panel data.

9.1 The Example

The data file from Example 9.1 is pennxrate.dta, which is a file with real

exchange rate data on a balanced panel consisting of 151 countries observed

over 34 years, from 1970 through 2003. The data are derived from the Penn

World tables.1 The U.S. is treated as the base country for exchange rates, and

isn’t included in the data set. The main series of interest is LNRXRATE, which is

the log real exchange rate. The data file includes dummies for the G7 countries

(there will be six of them, since the U.S. is the base) and OECD countries. If PPP

holds, then there should not be a unit root in this series. The data file is read

with

open data pennxrate.dta

calendar(panelobs=34,a) 1970

data(format=dta) 1//1970:01 151//2003:01 year xrate ppp id $

capt realxrate lnrxrate oecd g7

9.2 Levin-Lin-Chu test

Levin, Lin, and Chu (2002) propose a test which has an alternative hypothesis

that the ρi are identical and negative.2 Because ρi is fixed across i, this is

one of the most complicated of the tests because the data from the different

individuals need to be combined into a single final regression. To isolate only

the ρi in (9.1), the residuals from regressions of ∆yit and yi,t−1 from all the

“nuisance” variables (lags and deterministics) are obtained using individual by

1This is an example taken from the documentation for the Stata command xtunitroot.
2This circulated as a working paper with just Levin and Lin, so is more commonly known

as the Levin-Lin test.
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individual regressions. This is an application of the Frisch-Waugh Theorem to

a linear regression stacked across individuals.

Each individual’s data is scaled down by a feasible estimate of the standard de-

viation of the variance of εit. This produces two series ẽi,t (from ∆yit) and ṽi,t−1
(from yi,t−1). The basic test statistic is the t statistic on the linear regression

of ẽi,t on ṽi,t−1. For a single individual, this would be identically the Dickey-

Fuller t-test statistic for the given set of augmenting lags and deterministic

components—that’s what the Frisch-Waugh Theorem gives us. However, we

can’t use the tabulated D-F distribution since both the numerator and denomi-

nator are aggregated across individuals. Instead, the authors provide centering

and normalizing constants such that, as N →∞
3 an adjusted t converges to a

standard Normal. In addition to centering and normalizing constants (which

depend upon (average) T and the choice of deterministics), there’s also a need

to correct for the different long-run variances of the ṽi,t processes across i. For a

single time series, the long-run variance cancels out of the asymptotic distribu-

tion of the t (under the null of a unit root), but won’t when both numerator and

denominator are first aggregated across individuals with different short-run

dynamics.

As a complicated multi-step procedure, there are a number of places where

two implementations can differ. In addition to possibly different choices for

lag length, both the short- and long-run variance calculations can be computed

either under the null that ρ is zero, or under the alternative where ρ has been

estimated. And the long-run variance depends upon choice of lag window and

lag length.

The procedure @LEVINLIN can be used to do this test. This has quite a few

options for controlling the calculation. First, the deterministic components are

selected using a standard (for unit root tests) DET option:

DET=NONE/[CONSTANT]/TREND

where the default is constant (that is, individual fixed effects since the coef-

ficients on the deterministic variables are heterogeneous). DET=TREND adds

individual-specific constant and trend.

The lag length selection for the lagged differences is governed by:

LAGS=(maximum) number of additional lags of the differenced series
CRIT=FIXED/[GTOS]/AIC/BIC/HQ
SLSTAY=significance level for keeping the marginal lag in CRIT=GTOS

These again are fairly standard for RATS procedures for ADF type analysis. The

default is to do general-to-specific, dropping lags as long as the significance

3With N/T → 0.
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level of the t-statistic on the final one is greater than the SLSTAY value (.10 as

default).

Finally, the lag window for estimating the long-run variance is chosen using

the options:

LWINDOW=[NEWEY]/BARTLETT/FLAT/PARZEN/QUADRATIC
BANDWIDTH=# of lags (or bandwidth for LWINDOW=QUADRATIC)

Since the LAGS option is already being used, the lags or bandwidth is chosen

using the BANDWIDTH option.

In addition to these options, the @LEVINLIN procedure offers an alternative to

compute the long-run variance. The standard calculation takes the residuals

from a regression of ∆yit on the deterministics and applies the chosen lag win-

dow to those to get the long-run variance for an individual.4 Under the null,

however, the regression of the ∆yit on both the deterministics and the augment-

ing lags offers an estimate of the long-run variance by recoloring: the ratio of

long- to short-run variances is

1
(
1−

pi∑
l=1

φi,l

)2

You can choose this with the option RECOLOR, which is off by default. This has

the advantage that the two variances are computed over the same range, while

the standard calculation uses a longer sample range for the long-run variance

(basically the full individual sample) than the short-run. It also eliminates one

additional choice that could affect the test statistic.

On the example program, we use three different choices for computing the long-

run variance: Bartlett (or Newey-West) windows of width 10 and 5, and the

recolored AR. We use the SMPL option to restrict the sample to just the G7

countries.5

@levinlin(smpl=g7,lags=10,crit=aic,band=10) lnrxrate

@levinlin(smpl=g7,lags=10,crit=aic,band=5) lnrxrate

@levinlin(smpl=g7,lags=10,crit=aic,recolor) lnrxrate

The output from the final one of these is

Levin-Lin Unit Root Test: Series LNRXRATE

Test has large N, N/T-->0

Null is Unit Root. Alternative is Common Stationary Root.

Individual Specific Components: Constant

With average lags 1.00 chosen from 7

Long-run variances by recolored AR

N 6

T 34

t-unadjusted -6.73614

t-adjusted -1.95162

Signif 0.02549

4In Baltagi (2008), Step 2 on page 276 omits the step of extracting the deterministics.
5The usable sample will be further restricted by lags, but that’s all done internally.
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The t-adjusted in the actual Levin-Lin test statistic and the significance level

is the one-tailed (negative) comparison of that with a standard Normal. The

bandwidth of 10 strikes me as too wide for just 34 data points. It gives a much

more significant result of -3.44300. The narrower bandwidth gives -2.23023

which is more in agreement with the recolored value. While you would reject a

unit root (thus accepting PPP) with any of these, we have a difference between a

lukewarm rejection at a significance level of .02 vs. a rather emphatic rejection

of with a p-value of 0.0003 for the wide bandwidth from different variations on

the same test.

9.3 Harris-Tzavalis Test

A similar but simpler test is described by Harris and Tzavalis (1999). This

also has a null of unit root versus an alternative with a single stationary value.

It’s designed to be applied to data sets which are relatively short in T . In or-

der to provide relatively exact corrections for small values,6 they very tightly

restrict the model to exclude the augmenting lags. Thus if the original panel

is balanced (which they require), it will remain so. They also assume a homo-

geneous variance which the Levin-Lin test doesn’t. The test, as implemented,

uses yit rather than ∆yit as the dependent variable, which means that the test

is for ρ = 1 rather than ρ = 0. It has large N , fixed T asymptotics, again, with

the centered and rescaled test statistic being N(0, 1).

This is implemented in RATS using the procedure @HTUNIT, which is a rela-

tively simple procedure since there are so few options. This applies the test to

the G7 and OECD subsamples. Note that N = 6 for the first of these is probably

too small.

@htunit(smpl=g7) lnrxrate

@htunit(smpl=oecd) lnrxrate

The output from the G7 test is:

Harris-Tzavalis Test: Series LNRXRATE

Test has fixed T, large N asymptotics

Null is rho(i)=1. Alternative is rho(i)==rho<>1

Individual Specific Components: Constant

N 6

T 34

Rho 0.80615

Z -2.95168

Signif 0.00158

9.4 Im-Pesaran-Shin Test

Im, Pesaran, and Shin (2003) start with the same basic model (9.1), but, unlike

Levin-Lin-Chu and Harris-Tzavalis, they allow the more general alternative

that the ρi can vary and, in fact, that some individuals can have a unit root.

6Levin-Lin-Chu provide a rather coarse table with (average) T values of 25, 30, 35, 40 etc.
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Of course, the power of the test diminishes quite severely if a substantial frac-

tion have a unit root. With everything heterogeneous, the simplest approach is

to compute separate ADF test statistics on each individual and combine those

(by simple averaging of the t-statistics). The final test statistic is a normal-

ized and rescaled version of this called Zt̃−bar which has an asymptotic N(0, 1)
distribution. This has large T -large N asymptotics.

In RATS, this is performed with the @IPSHIN procedure. Because it does an

ADF test for each individual, it has the standard options for controlling that:

LAGS=(maximum) number of additional lags of the differenced series
CRIT=FIXED/[GTOS]/AIC/BIC/HQ
SLSTAY=significance level for keeping the marginal lag in CRIT=GTOS

Note that the limit on the number of lags is 8 as that is as high as the adjust-

ment tables go.

The authors allow only for constant or constant and trend. However, to main-

tain the syntax with the other tests, the DET option still reads:

DET=NONE/[CONSTANT]/TREND

but DET=NONE generates an error.

For the G7 and full OECD countries, the instructions are:

@ipshin(smpl=g7,lags=8,crit=aic) lnrxrate

@ipshin(smpl=oecd,lags=8,crit=aic) lnrxrate

The output for the G7 is

Im-Pesaran-Shin Unit Root Test: Series LNRXRATE

Test has large N on large T asymptotics

Null is Unit Root. Alternative is rho(i)<>1 for some i

Individual Specific Components: Constant

N 6

T 31 to 33

Avg P 1.000000 chosen from 8 by AIC

Statistic Signif Level

Z tbar -2.902291 0.001852

Z ttildebar -2.328060 0.009954

9.5 Breitung Test

Breitung (2000) proposes an alternative set of procedures to Levin-Lin-Chu

that use unbiased estimators rather than bias-corrected ones. First consider

the case with no drift:

yit = αi + xit, φi(L)xit = εit

For simplicity, we’ll assume that there are no nuisance short-run dynamics, so

φi(L) = (1− L)− ρL
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The null is ρ = 0 vs the alternative ρ < 0. (This is the same as Levin-Lin-Chu).

Under the null,

∆yit = εit

and

yit = yi0 +
t∑

s=1

εis

If, instead of extracting the sample mean, we subtract yi0 from yit, then

∆̃yit ≡ ∆yit = εit

and

ỹi,t−1 = yi,t−1 − yi0 =
t−1∑

s=1

εis (9.2)

are uncorrelated by construction (under the null). Now assume that we have

individual-specific trends:

yit = αi + βit+ xit, φi(L)xit = εit

Now, again with no short-run dynamics, we have

∆yit = βi + εit

and

yit = yi0 + βit+
t∑

s=1

εis

We can detrend yit using

ỹit = yit −

(
yi0 +

t

T
(yiT − yi0)

)
=

t∑

s=1

εis −
t

T

T∑

s=1

εis

However, unlike (9.2), this is a function of all εis rather than just those dated

t and earlier. To produce an unbiased estimator, ∆yit is de-meaned using a

forward operation like

∆̃yit = ∆yit −
1

T − t

T∑

s=t+1

∆yit = εit −
1

T − t

T∑

s=t+1

εis

While both ∆̃yit and ỹi,t−1 are functions of all εis, they are uncorrelated since

the first term in ỹi,t−1 uses only subscripts through t − 1 and thus has zero

correlation with ∆̃yit constructed with subscripts from t on, while the second is

uncorrelated with ∆̃yit because the weights are equal in the sum in ỹi,t−1 and

the weights sum to zero in ∆̃yit.
7

7∆̃y
it

is actually scaled by
√

T−t

T−t+1
to standardize the variances. That doesn’t change the

fact that the weights sum to zero.
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In both cases, in regressing ∆̃yit on ỹi,t−1, we have a non-stationary regressor

under the null. However, in the regression over the panel, it’s a sum of N

independent functions of non-stationary regressors. Breitung uses N before T

asymptotics to eliminate the problem with that.8

Short-run dynamics are handled by taking deviations from regressions onto

lagged differences for the difference and the lagged dependent variable (as in

Levin-Lin-Chu). However, this is done before the detrending/de-meaning oper-

ations.9 ∆̃yit and ỹi,t−1 are divided by an estimate of σi to correct for hetero-

geneous variances. The test is the t statistic from regressing the full sample

(standardized) ∆̃yit on ỹi,t−1, which has an asymptotic N(0, 1) distribution.

In RATS, this is performed with the procedure @BREITUNG. This has the stan-

dard controls for choosing individual-specific lag lengths, though the asymp-

totics actually rely on fixed large T , so using different numbers of lags would

invalidate that. Whether that’s a problem in practice isn’t clear.

LAGS=(maximum) number of additional lags of the differenced series
CRIT=FIXED/[GTOS]/AIC/BIC/HQ
SLSTAY=significance level for keeping the marginal lag in CRIT=GTOS

Again, the DET option has the form:

DET=NONE/[CONSTANT]/TREND

The cases where DET=TREND is appropriate are the ones where Breitung’s pro-

cedure should perform better than the Levin-Lin-Chu and Im-Pesaran-Shin

tests.

Finally, there is the option

ROBUST/[NOROBUST]

With ROBUST, the final regression uses an Eicker-White heteroscedasticity con-

sistent covariance matrix in constructing the test statistic. With NOROBUST, it

uses a standard t calculation (though without scaling by σ2 since the data are

already scaled).

For the OECD sample, the Breitung test is done with:

@breitung(smpl=oecd,det=constant) lnrxrate

with output

8For large N , fixed T , a central limit theorem reduces the non-stationary part to calculation

of its sample mean. I’m not 100% convinced of one step in Breitung’s proof, but if the final

regression is done using Eicker-White standard errors, it should be fine.
9Levin-Lin-Chu does them at the same time.
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Breitung Unit Root Test: Series LNRXRATE

Test has large N, large T (sequential) asymptotics

Null is Unit Root. Alternative is Common Stationary Root.

Individual Specific Components: Constant

With average lags 1.59 chosen from 9

N 27

T 34

Test Statistic -3.22993

Signif 0.00062

9.6 Hadri Test

Unlike the previous tests, the Hadri (2000) proposes a test where the

null is stationarity. This is a generalization of the KPSS fluctuations test

(Kwiatkowski, Phillips, Schmidt, and Shin (1992)) for a single time series.

If the residuals from the deterministic part of the series form a stationary

process, the partial sums of the residuals (properly scaled) form a Brownian

Bridge. If the residuals are non-stationary, those same partial sums should

have more extreme values than would be compatible with a Brownian Bridge.

The typical test statistic for univariate time series is

1

T 2ψ2

T∑

t=1

S2

t

where ψ2 is the long-run variance of the residual process. The panel test statis-

tic aggregates across i, centers and normalizes to create an asymptotically

N(0, 1). It rejects in the right-tail (fluctuations too large).

In RATS, this is done using the @HADRI procedure. This has the usual DET

option to choose the deterministic components. Again, NONE is included, but

isn’t a valid option.

DET=NONE/[CONSTANT]/TREND

There are three forms of test statistic, which govern how the scaling coefficients

ψ2
i are determined. If the residuals are assumed to be serially uncorrelated,

they can be either be the same or different across individuals. Or, you can

allow for serial correlation. You choose among the three using the option:

VARIANCE=[HOMOGENEOUS]/HETEROGENEOUS/ROBUST

For the calculations robust to serial correlation, the ψ2
i are computed as sepa-

rate long-run variance estimates across individuals. The method of computing

the long-run variance is chosen using the options:

LWINDOW=[NEWEY]/BARTLETT/FLAT/PARZEN/QUADRATIC

LAGS=# of lags (or bandwidth for LWINDOW=QUADRATIC)
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just as they would be for HAC standard error calculations on a LINREG instruc-

tion. For the OECD data, this does one test using homogeneous variances, and

one with long-run variance calculations.

@hadri(smpl=oecd,det=constant) lnrxrate

@hadri(smpl=oecd,det=constant,variance=robust,$

lwindow=bartlett,lags=5) lnrxrate

The output from the second is:

Hadri LM Unit Root Test: Series LNRXRATE

Test has large N, large T asymptotics

Null is Stationary. Alternative is Some Unit Roots

Individual Specific Components: Constant

Robust to Serial Correlation, Bartlett(Newey-West)(5)

N 27

T 34

Z 6.932146

Signif 0.000000

Note that this gives the opposite conclusion from the other tests—since the

null is stationarity, rejection means that we find fairly strong evidence of non-

stationarity. All of the tests have been based upon independence across indi-

viduals. If there is, for instance, a common time component, that wouldn’t be

true. We can repeat tests with deviations from means at each time period with:

panel(entry=1.0,time=-1.0,smpl=oecd) lnrxrate / cxrate

@levinlin(smpl=oecd,lags=10,crit=aic,band=5) cxrate

@htunit(smpl=oecd) cxrate

@ipshin(smpl=oecd,lags=8,crit=aic) cxrate

@hadri(smpl=oecd,det=constant,variance=robust,$

lwindow=bartlett,lags=5) cxrate

However, this doesn’t change the problem with conflicting results.
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Example 9.1 Panel Unit Root Tests

This implements the different unit root testing procedures described in this

chapter.

open data pennxrate.dta

calendar(panelobs=34,a) 1970

data(format=dta) 1//1970:01 151//2003:01 year xrate ppp id $

capt realxrate lnrxrate oecd g7

*

* Levin-Lin-Chu test (G7 only)

*
@levinlin(smpl=g7,lags=10,crit=aic,band=10) lnrxrate

@levinlin(smpl=g7,lags=10,crit=aic,band=5) lnrxrate

@levinlin(smpl=g7,lags=10,crit=aic,recolor) lnrxrate

*

* Harris-Tzavalis test

*
@htunit(smpl=g7) lnrxrate

@htunit(smpl=oecd) lnrxrate

*

* Im-Pesaran-Shin test

*
@ipshin(smpl=g7,lags=8,crit=aic) lnrxrate

@ipshin(smpl=oecd,lags=8,crit=aic) lnrxrate

*

* Breitung test

*
@breitung(smpl=oecd,det=constant) lnrxrate

*

* Hadri test

*
@hadri(smpl=oecd,det=constant) lnrxrate

@hadri(smpl=oecd,det=constant,variance=robust,$

lwindow=bartlett,lags=5) lnrxrate

*

* Tests with deviations from common time effects

*
panel(entry=1.0,time=-1.0,smpl=oecd) lnrxrate / cxrate

*
@levinlin(smpl=oecd,lags=10,crit=aic,band=5) cxrate

@htunit(smpl=oecd) cxrate

@ipshin(smpl=oecd,lags=8,crit=aic) cxrate

@breitung(smpl=oecd,det=constant) cxrate

@hadri(smpl=oecd,det=constant,variance=robust,$

lwindow=bartlett,lags=5) cxrate


