
Chapter 6

More on Multivariate GARCH

We’ll now discuss adjustments to the basic multivariate GARCH models and

other types of analysis which can be done with results from the GARCH instruc-

tion.

We’ll look at two new data sets. For Sections 6.1 and 6.2 we will use (a re-

construction of) the data set from Hafner and Herwartz (2006) (from now on

HH). The full data set (called HHDATA.XLS) has 3270 daily observations on ten

exchange rates vs the dollar, running from 31 December 1979 to 1 April 1994.

The data as used in the paper are expressed in local currency/USD, while the

data on the file are USD/local currency, so we have to change the sign when

computing the returns.1 There’s a separate date column, with the date coded

numerically as a six digit number yymmdd. Although the data set includes all

five days a week and so could be handled as CALENDAR(D) with RATS, we’ll

treat it as irregular, and show how to locate an entry based upon a coded date

field like that. The data are read with

open data hhdata.xls

data(format=xls,org=columns) 1 3720 usxjpn usxfra usxsui $

usxnld usxuk usxbel usxger usxswe usxcan usxita date

Our focus will be on bivariate models on returns for two of the currencies:

the British pound and the Deutsche mark. The authors choose to use separate

univariate autoregressions for the mean models—if you estimate a one lag VAR,

the “other” lags have t-stats less than 1, so leaving them out isn’t unreasonable.

The mean model can be set up with

set demret = -100.0*log(usxger/usxger{1})

set gbpret = -100.0*log(usxuk/usxuk{1})

*
equation demeqn demret

# constant demret{1}

equation gbpeqn gbpret

# constant gbpret{1}

group uniar1 demeqn gbpeqn

The GROUP instruction combines the separate equations into a single model for

input into GARCH. This is the only way to create a mean model with different

1
Though this has no effect on any variance calculations.
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Table 6.1: BEKK Estimates for Hafner-Herwartz Data

MV-GARCH, BEKK - Estimation by BFGS

Convergence in 54 Iterations. Final criterion was 0.0000075 <= 0.0000100

Usable Observations 3718

Log Likelihood -5259.4997

Variable Coeff Std Error T-Stat Signif

1. Constant 0.0086 0.0089 0.9677 0.3332

2. DEMRET{1} 0.0035 0.0123 0.2853 0.7754

3. Constant -0.0030 0.0085 -0.3546 0.7229

4. GBPRET{1} 0.0184 0.0125 1.4662 0.1426

5. C(1,1) 0.0963 0.0122 7.9131 0.0000

6. C(2,1) 0.0708 0.0138 5.1138 0.0000

7. C(2,2) -0.0456 0.0039 -11.7169 0.0000

8. A(1,1) 0.2891 0.0235 12.2816 0.0000

9. A(1,2) -0.0072 0.0225 -0.3205 0.7486

10. A(2,1) -0.0518 0.0239 -2.1674 0.0302

11. A(2,2) 0.2459 0.0209 11.7592 0.0000

12. B(1,1) 0.9565 0.0071 134.6023 0.0000

13. B(1,2) 0.0046 0.0065 0.7170 0.4734

14. B(2,1) 0.0100 0.0075 1.3378 0.1810

15. B(2,2) 0.9636 0.0055 175.5495 0.0000

16. Shape 4.3861 0.2451 17.8967 0.0000

regressors; a full VAR can be done using the REGRESSORS option, as that puts

the same set of regressors into each equation, though we would recommend the

more convenient SYSTEM definition for the model.

They choose a BEKK model with t errors:

garch(model=uniar1,mv=bekk,rvectors=rd,hmatrices=hh,distrib=t,$

pmethod=simplex,piters=20,iters=500)

which produces Table 6.1. If we compare this with the BEKK estimates in Ta-

ble 5.4, off-diagonal elements for A and B are, in this data set, close to zero.

A further restricted version of the BEKK called a diagonal BEKK or DBEKK ap-

pears to be appropriate. A DBEKK is also a restricted version of the DVECH

where the coefficients on A and B in the covariance recursions are the geo-

metric means of the coefficients on their corresponding variance recursions.

The option MV=DBEKK was added with RATS version 8.2 to estimate this model.

Since it won’t make much difference, we’ll use the unresticted BEKK in the

examples in Sections 6.1 and 6.2.
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Figure 6.1: Forecasts from a BEKK GARCH Model

6.1 Forecasting

For any model that can be cast into VECH form, the out-of-sample forecasts

can be done using the recursion (5.2). As with univariate forecasts, this will

require input of the estimates for the residuals and covariance matrices. The

calculations can be done most easily using the procedure @MVGARCHFore. In

Example 6.1, we’ll use the BEKK model estimated above. To forecast out-of-

sample for 100 steps, we use

@MVGARCHFore(mv=bekk,steps=100) hh rd

The HH and RD are input to the procedure, and HH is also used for the output.

The following graphs the last 400 observed values and the 100 forecast steps

for the two volatilities and the correlations, producing Figure 6.1:

spgraph(vfields=2,hfields=2)

compute gstart=%regend()-399,gend=%regend()+100

set h11fore gstart gend = hh(t)(1,1)

set h22fore gstart gend = hh(t)(2,2)

set h12fore gstart gend = hh(t)(1,2)/sqrt(h11fore*h22fore)

graph(row=1,col=1,grid=(t==%regend()+1),min=0.0,$

header="Deutsche Mark Volatility")

# h11fore

graph(row=2,col=2,grid=(t==%regend()+1),min=0.0,$

header="British Pound Volatility")

# h22fore

graph(row=2,col=1,grid=(t==%regend()+1),header="Correlation")

# h12fore

spgraph(done)

As you can see, there’s a quick move on the D-Mark, which results from a fairly
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large residual in its last data point. If you graphed just the forecasts with-

out the context of the actual data, the forecasts would appear to be explosive.

However, the model has eigenvalues just below 1, and is simply (very slowly)

converging back from the historically low volatility at the end of the sample

towards the average.

6.2 Volatility Impulse Response Functions

Hafner and Herwartz (2006) introduced the concept of the volatility impulse

response function (VIRF) for multivariate GARCH models. The recursion (5.1)

is very similar to the one governing a one-lag VAR in the mean, and we gener-

ally describe the dynamics of a VAR in terms of its impulse responses or some

information derived from them.

The calculation of the VIRF is not difficult for models which can be put into

the VECH form, once we define what an “impulse” means in this context. For

the IRF for a VAR, a shock is any non-zero ut. Because of linearity, we can

do responses to a standardized set of shocks (for instance, unit shocks to each

variable in turn) and add or rescale them to get responses to any other set of

shocks. IRF’s are usually presented as an n × n set of graphs, one for each

combination of shock and target variable. For a GARCH model, that no longer

will work, since the ut enters as a “square” (actually as the outer product). Now

a unit shock may be completely out-of-scale, and we can’t simply aggregate

them anyway, since the inputs get squared before being used. Instead, VIRF’s

need to be calculated as the responses to a complete vector of shocks.

HH describe several ways to create interesting sets of shocks to input to the

recursion. To make sense, these must somehow be “typical” of the data. We

pick either ut and transform to utu
′

t or pick utu
′

t directly. The difference in the

volatility forecasts (5.2) with the input shocks (compared to ut = 0) is then:

vech(vt+1) = Avech(utu
′

t)

vech(vt+k) = (A+B)vech(vt+k−1)

This defines what the authors call the conditional volatility profile. This is a

function just of the model coefficients and the shock, and not the data. The

VIRF itself is the same basic formula with a slightly different input. In the

standard IRF, we’re computing the revision in the forecast due to observing the

given shock. For the analogous idea in the volatility equation, we need to do

the calculations as:

vech(Vt+1) = Avech(utut
′ −Ht)

vech(Vt+k) = (A+B)vech(Vt+k−1)
(6.1)

where Ht is the GARCH covariance matrix for time t. The VIRF depends upon

the data now through Ht—the “shock” to the variance is the amount by which

the utu
′

t exceeds its expected value. Of course, it’s possible for that to be nega-
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tive, even on the diagonals, while the input to the conditional volatility profile

has to have positive diagonals.

HH computed VIRF for two historical episodes, and we’ll show how to handle

those. Note, however, that the data set is a reproduction, so the results don’t

quite match. We are also scaling the data by 100 relative to what they do,

which eliminates the need to rescale the responses themselves.

The model in Example 6.2 is the same as the one used in Section 6.1—a BEKK

with t errors. To compute the VIRF, we need to convert the BEKK estimates to

VECH. This also looks at the eigenvalues of the persistence matrix:

@MVGARCHtoVECH(mv=bekk)

eigen(cvalues=cv) %%vech_a+%%vech_b

disp "Eigenvalues from BEKK-t" *.### cv

The eigenvalues are just barely inside the stable region:

Eigenvalues from BEKK-t (0.994,-0.000) (0.993,0.004) (0.993,-0.004)

The shocks used in the two experiments are from “Black Wednesday” (Septem-

ber 16, 1992), when the Italian lira and the UK pound dropped out of the Eu-

ropean Exchange Rate Mechanism (ERM), and August 2, 1993, when the EC

finance ministers changed the variability bands on currencies in the ERM. The

simplest way to locate those entries given the DATE field on the file is with:

sstats(max) / %if(date==920916,t,0)>>xblackwed $

%if(date==930802,t,0)>>xecpolicy

compute blackwed=fix(xblackwed),ecpolicy=fix(xecpolicy)

Now, if we had a daily CALENDAR date scheme, we could simply use

compute blackwed=92:9:16

compute ecpolicy=93:8:2

for the entries, but we didn’t set that up with this data set, so we’re showing

how to locate an entry given the coded date field. XBLACKWED and XECPOLICY

are both REAL variables (which is what SSTATS returns), so the COMPUTE in-

struction is used to convert them to INTEGER entry numbers.

Example 6.2 wraps the calculations in an SPGRAPH which does two columns,

one for each shock, with three fields in each, one for the each variance and

one for the covariance. In practice, that would be the last thing you did—you

would want to get the calculations right first before being concerned with the

appearance of the output. So we’ll skip that for later and jump right to the

calculation.

The description of the calculation for the VIRF in the paper is more compli-

cated than it needs to be—they transform the observed residuals to a standard-

ized vector using (in our notation) Ht, but the standardization gets reversed in
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putting in back into the recursion. Instead, you can just compute the final

matrix in the first row of (6.1) using

compute eps0=rd(blackwed)

compute sigma0=hh(blackwed)

compute shock=%vec(%outerxx(eps0)-sigma0)

Because the VECH recursion is in vech form, we need to convert the shock from

a matrix to a vector. %VEC does the VECH stacking as long as its argument

is identifiable as a symmetric array. That’s the case here because SIGMA0,

as an element of HH, is SYMMETRIC and %OUTERXX creates a SYMMETRIC by

construction. If you want to be careful, you can write %VEC([SYMMETRIC]...)

to force the desired interpretation.

The calculation will generate 3 (that is, n(n + 1)/2) output series over the re-

quested number of steps (400 in this example, which has already been saved

into the variable NSTEP). This creates a target set of SERIES for this:

dec vect[series] sept92virf(3)

do i=1,3

set sept92virf(i) 1 nstep = 0.0

end do i

The actual calculation is quite simple. HVEC is an n(n + 1)/2 vector which, at

each point, has the previous period’s vech’ed response. This gets overwritten by

the recalculated value. At each step, this gets split up into the 3 SEPT92VIRF

series using %PT.

do step=1,nstep

if step==1

compute hvec=%%vech_a*shock

else

compute hvec=(%%vech_a+%%vech_b)*hvec

compute %pt(sept92virf,step,hvec)

end do step

The first column of graphs is done with the following, which has a few options

added to improve the appearance:

do i=1,3

graph(column=1,row=i,picture="*.###",vticks=5)

# sept92virf(i) 1 nstep

end do i

Note that because of the way the vech operator works, the second graph is the

covariance between the two currencies.

The calculation of the VIRF for the EC policy shock is similar:
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Figure 6.2: Volatility Impulse Response Functions

compute eps0=rd(ecpolicy)

compute sigma0=hh(ecpolicy)

compute shock=%vec(%outerxx(eps0)-sigma0)

Given that, the rest of the calculation is the same as above, with results put

into a different VECTOR[SERIES]:

dec vect[series] aug93virf(3)

do i=1,3

set aug93virf(i) 1 nstep = 0.0

end do i

*
do step=1,nstep

if step==1

compute hvec=%%vech_a*shock

else

compute hvec=(%%vech_a+%%vech_b)*hvec

compute %pt(aug93virf,step,hvec)

end do step

do i=1,3

graph(column=2,row=i,picture="*.###",vticks=5)

# aug93virf(i) 1 nstep

end do i

The SPGRAPH that encloses the graphs puts labels on the rows and columns on

the margins of the graph array. The result is Figure 6.2.

spgraph(vfields=3,hfields=2,footer="Figure 1",$

xlabels=||"1992 Sept 16","1993 Aug 2"||,$

ylabels=||"DEM/USD Variance","Covariance","GBP/USD Variance"||)
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Ordinarily, with standard impulse response functions, we recommend graphing

all responses of a variable over a common range, as that makes it easier to

compare the importance of the different shocks in explaining a variable. HH

recommend scaling the responses by the historical variances at the time of the

shock in question.2 In this case, it would make almost no difference, since the

variances (in our scaling of the data) are very near 1 in both situations.3 And

that would not change the fact that the first incident disproportionately hit

the pound, while the second had almost no effect on it. It probably still makes

sense to use a common scale across a row, but be aware of the fact that, unlike

the IRF for a VAR, the size of the responses isn’t just a function of the model,

but depends upon your choice of historical shocks to apply.

6.3 Asymmetry

Asymmetry is more complicated with multivariate models than univariate.

With the univariate model, there are many equivalent ways to parameterize

asymmetry. For instance,

au2

t−1 + du2

t−1I(ut−1 < 0) = (a+ d)u2

t−1 − du2

t−1I(ut−1 > 0)

= au2

t−1I(ut−1 > 0) + (a+ d) u2

t−1I(ut−1 < 0)

so it doesn’t matter whether the asymmetry term uses the positive or negative

sign. The first formulation is used most often because the assumption is that

negative shocks increase variance more than positive ones, so that would give

d > 0. But if that assumption is incorrect—if it’s positive shocks which increase

the variance—there is nothing preventing d from being negative.

In a multivariate setting, it’s no longer true that the sign convention is innocu-

ous. The problem comes from the interaction terms between the shocks. The

most commonly used adjustment for asymmetry in the standard multivariate

GARCH is to define vt as

vt = ut ◦ I(ut < 0)

that is vit = uit if uit < 0 and vit = 0 otherwise, done component by component.

The recursion for H is

Ht = C+A ◦
(

ut−1u
′

t−1

)

+B ◦Ht−1 +D ◦
(

vt−1v
′

t−1

)

(6.2)

The diagonal terms are identical to those in a corresponding asymmetric uni-

variate GARCH. However, for off-diagonal element ij, the asymmetry term is

non-zero only if both ui,t−1 and uj,t−1 are negative. The recursion differentiates

between those data points with both negative (where D comes into play) and

those where at least one is positive, which only get the first three terms. If

2
Presumably dividing the covariance by the square root of the product of the variances,

though that’s not explicit in the paper.
3
With their scaling, these would all be smaller by a factor of 10000.
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we change the sign convention in the definition of v, the data points which get

the added term are those where both u are positive. Both of these leave out

those data points with one positive and one negative. Unless you add an addi-

tional term or terms to deal with those, the likelihood function will be different

depending upon which sign convention you choose for the asymmetry.

For univariate models with the basic GARCH recursion (not EGARCH), forecast-

ing can be done relatively easily with the asymmetry, because

E
(

u2

t−1I(ut−1 > 0)
)

= .5Eu2

t−1

which is true for any symmetric density for u. And that’s true on the diagonals

for (6.2), but not the off-diagonals. The expected value of vitvjt for i 6= j is a

complicated function of the covariance matrix. For a Normal distribution, this

is:

Evivj = hijF (0, 0, ρ) +

√

1− ρ2

2π

√

hiihjj (6.3)

where F (x, y, r) is the standard bivariate normal CDF with correlation r.4 (6.3)

is a special case of the general formula in Muthen (1990) with ρ as the correla-

tion between ui and uj. (6.3) only gives .5hij if ρ = 1. We’ve seen several papers

that did calculations with asymmetric models assuming that the .5 factor could

apply to the full matrix; this is incorrect. Not only is it not a simple function,

but it also depends upon the distribution: (6.3) is specific to the Normal. For

the same reason, there is no simple extension of the VIRF of Section 6.2 to an

asymmetric model—even if you want to incorporate the calculation in (6.3), it

can’t be computed without H itself at every stage, so there is no way to compute

it as an impulse response.

As with the univariate model, you add asymmetry to the GARCH model by

adding the ASYMMETRIC option to GARCH. What parameters that adds to the

model will depend upon the choice for the MV option.

The data file used in Example 6.3 is daily return data on the US SP500, the

Japanese Nikkei and the Hong Kong Hang Seng, daily (holidays included) from

1 January 1986 to 10 April 2000. The original data are just raw daily returns,

so we scale up by 100:

4
The standard bivariate normal has variance 1 for each component and correlation r. The

CDF is the probability of the quadrant southwest of (x, y). This can’t be calculated using the

univariate CDF unless r = 0; instead, you can use the RATS function %BICDF.
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open data mhcdata.xls

cal(d) 1986:1:1

data(format=xls,org=columns) 1 3724 rnk rhs rsp

*

* We scale up the original data by 100.0

*
set rsp = rsp*100.0

set rnk = rnk*100.0

set rhs = rhs*100.0

This is taken from the working paper “Empirical Modelling of Multivariate

Asymmetric Financial Volatility” by Chan and McAleer. Asymmetry is a com-

mon feature in GARCH models of stock market return data, presumably due to

the leverage effect. As with the example above, the authors chose univariate

AR1 models for the mean:

equation speq rsp

# constant rsp{1}

equation nkeq rnk

# constant rnk{1}

equation hseq rhs

# constant rhs{1}

*
group armeans speq nkeq hseq

The simplest form of asymmetry is in the basic CC model—this just adds the

one univariate asymmetry parameter to each variance equation. As we will

be looking at several non-nested models, we’ll compute a set of information

criteria on each model:

garch(model=armeans,mv=cc,asymm)

@regcrits(title="CC Model with Asymmetry")

For the simple CC model, the asymmetry coefficients are labeled as D(1), D(2),

D(3) for the three equations. The output is Table 6.2. As you can see, the

asymmetry terms are highly significant, and are larger (even when multiplied

by .5) than the corresponding A coefficients.

The final model in the working paper was the CC model with asymmetric

VARMA GARCH variances. The added asymmetry parameters are one per vari-

able, just like the basic CC. The VARMA GARCH is an extension of the spillover

model (page 98) which includes B coefficients on all the lagged variances, not

just own variances.5 It is estimated with MV=CC and VARIANCES=VARMA.

5
Unfortunately, the phrase VARMA-GARCH is used to mean both a GARCH with the VARMA

recursion for the variances, and a standard GARCH model with a VARMA model for the mean.
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Table 6.2: CC Model with Asymmetry

MV-GARCH, CC - Estimation by BFGS

Convergence in 51 Iterations. Final criterion was 0.0000053 <= 0.0000100

Daily(5) Data From 1986:01:03 To 2000:04:10

Usable Observations 3722

Log Likelihood -16751.3755

Variable Coeff Std Error T-Stat Signif

1. Constant 0.0565 0.0136 4.1561 0.0000

2. RSP{1} 0.0301 0.0179 1.6866 0.0917

3. Constant 0.0502 0.0172 2.9117 0.0036

4. RNK{1} -0.0031 0.0178 -0.1761 0.8602

5. Constant 0.0902 0.0210 4.3053 0.0000

6. RHS{1} 0.1006 0.0187 5.3759 0.0000

7. C(1) 0.0198 0.0042 4.7367 0.0000

8. C(2) 0.0297 0.0051 5.7849 0.0000

9. C(3) 0.0892 0.0107 8.3576 0.0000

10. A(1) 0.0276 0.0090 3.0629 0.0022

11. A(2) 0.0377 0.0079 4.7964 0.0000

12. A(3) 0.0528 0.0094 5.6350 0.0000

13. B(1) 0.9087 0.0122 74.7463 0.0000

14. B(2) 0.8702 0.0095 91.4406 0.0000

15. B(3) 0.8369 0.0103 80.8687 0.0000

16. D(1) 0.0847 0.0138 6.1593 0.0000

17. D(2) 0.1750 0.0165 10.6008 0.0000

18. D(3) 0.1738 0.0207 8.3871 0.0000

19. R(2,1) 0.2693 0.0136 19.7330 0.0000

20. R(3,1) 0.3148 0.0144 21.8621 0.0000

21. R(3,2) 0.2540 0.0156 16.3017 0.0000

garch(model=armeans,mv=cc,variances=varma,asymm,$

pmethod=simplex,piters=10,method=bfgs)

@regcrits(title="CC-VARMA Model with Asymmetry")

This adds an extra 12 parameters compared to the basic CC model. We’ll omit

the output—it’s does somewhat worse than the asymmetric CC on the BIC and

somewhat better on less stringent criteria like the AIC.

With asymmetry, the BEKK model becomes

Ht = CC
′ +A

′
ut−1u

′

t−1A+B
′
Ht−1B+D

′
vt−1v

′

t−1D

which adds the n×n matrix D. More than in the other models, this is sensitive

to the choice of sign for the asymmetric effect since that final term is forceably

positive semi-definite—the variance increment has to be at least as high for

the data points covered by the final term as it is for those that aren’t. The

default is for v to be constructed using the negative branch. RATS 8.2 adds

the SIGNS option, which allows you to use a different sign convention.. SIGNS

provides a n vector with the desired signs for the asymmetry for each variable.

The default is all -1, but you can change that to all 1’s for the positive branch,

or can mix-and-match if you have a combination of variables for which that’s
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appropriate. For instance, SIGNS=||-1,1|| in a bivariate system would have

negative asymmetry on the first variable and positive on the second.

garch(model=armeans,mv=bekk,asymm,$

pmethod=simplex,piters=10,method=bfgs)

@regcrits(title="BEKK Model with Asymmetry")

Asymmetry in the standard GARCH uses the formula (6.2). D is symmetric, so

it adds n(n + 1)/2 new parameters. This ends up being the (slightly) preferred

specification of the four, at least by the BIC and HQ. BEKK is very slightly

favored by AIC. The output from GARCH is in Table 6.3.

garch(model=armeans,asymm,rvectors=rd,hmatrices=hh,$

pmethod=simplex,piters=10,method=bfgs)

@regcrits(title="Standard GARCH with Asymmetry")

We did standard multivariate diagnostics for this model:

dec vect[series] rstd(%nvar)

do time=%regstart(),%regend()

eigen(scale) hh(time) * eigfac

compute %pt(rstd,time,%solve(eigfac,rd(time)))

end do time

*
@mvqstat(lags=10)

# rstd

@mvarchtest

# rstd

producing

Multivariate Q(10)= 110.19303

Significance Level as Chi-Squared(90)= 0.07295

Test for Multivariate ARCH

Statistic Degrees Signif

850.40 36 0.00000

The test for residual ARCH is clearly much worse than we would like. One

thing to note, however, is that none of the estimates used t errors. We can do a

multivariate Jarque-Bera test on the standardized residuals using the @MVJB

procedure with

@mvjb(factor=%identity(3)) rstd

Var JB P-Value

1 1861.392 0.000

2 5726.954 0.000

3 1265.721 0.000

All 8854.067 0.000

which shows that each component and the joint test are highly significant.

If we wanted to spend more time with this model, we would go back and re-
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Table 6.3: Standard GARCH with Asymmetry

MV-GARCH - Estimation by BFGS

Convergence in 111 Iterations. Final criterion was 0.0000059 <= 0.0000100

Daily(5) Data From 1986:01:03 To 2000:04:10

Usable Observations 3722

Log Likelihood -16686.6651

Variable Coeff Std Error T-Stat Signif

1. Constant 0.0597 0.0135 4.4183 0.0000

2. RSP{1} 0.0316 0.0174 1.8130 0.0698

3. Constant 0.0575 0.0165 3.4867 0.0005

4. RNK{1} -0.0022 0.0165 -0.1347 0.8928

5. Constant 0.1006 0.0187 5.3884 0.0000

6. RHS{1} 0.0948 0.0159 5.9826 0.0000

7. C(1,1) 0.0140 0.0031 4.4976 0.0000

8. C(2,1) 0.0033 0.0017 1.9017 0.0572

9. C(2,2) 0.0267 0.0046 5.7624 0.0000

10. C(3,1) 0.0093 0.0022 4.2025 0.0000

11. C(3,2) 0.0086 0.0030 2.8602 0.0042

12. C(3,3) 0.0785 0.0085 9.2891 0.0000

13. A(1,1) 0.0272 0.0066 4.1069 0.0000

14. A(2,1) 0.0047 0.0070 0.6664 0.5051

15. A(2,2) 0.0330 0.0075 4.3865 0.0000

16. A(3,1) 0.0116 0.0063 1.8307 0.0671

17. A(3,2) 0.0142 0.0078 1.8051 0.0711

18. A(3,3) 0.0517 0.0075 6.8830 0.0000

19. B(1,1) 0.9231 0.0087 106.1192 0.0000

20. B(2,1) 0.9144 0.0091 99.9792 0.0000

21. B(2,2) 0.8761 0.0092 95.4095 0.0000

22. B(3,1) 0.9269 0.0095 97.6067 0.0000

23. B(3,2) 0.9033 0.0098 92.4051 0.0000

24. B(3,3) 0.8484 0.0088 96.8754 0.0000

25. D(1,1) 0.0709 0.0109 6.4983 0.0000

26. D(2,1) 0.0917 0.0117 7.8123 0.0000

27. D(2,2) 0.1760 0.0152 11.6115 0.0000

28. D(3,1) 0.0566 0.0122 4.6524 0.0000

29. D(3,2) 0.0823 0.0145 5.6790 0.0000

30. D(3,3) 0.1604 0.0168 9.5343 0.0000
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estimate with t errors. It’s also the case that the ARCH test fails largely be-

cause of the period around the October 1987 crash in the US which create huge

outliers in the standardized residuals.6

6.4 GARCH-X

The XREGRESSORS option can be added to multivariate GARCH models as well

as univariate. Typically, these are dummies of some form. XREGRESSORS ad-

justs the C term in the GARCH recursion. For any form of CC, this adds a

coefficient for each variance equation for each of the “X” variables. For a stan-

dard GARCH, it adds a coefficient for each regressor to each of the components.

In either case, it’s relatively straightforward.

The only model type for which it’s not clear how to handle such regressors is

the BEKK because of the desire to enforce positive-definiteness. If we restrict

our attention to dummy variables, it’s a standard result that it’s irrelevant to

the fit whether a dummy is 0-1 or 1-0 for an event and its complement. For

instance, if we’re working with scalars:

α + βdt = (α + β)− β(1− dt) = α(1− dt) + (α + β) dt

If there are no sign restrictions, all three of these are equivalent. The problem

with the BEKK is that there are sign restrictions, since each term is required to

be positive semi-definite. If we apply the dummy to a factor matrix and try to

alter the interpretation of the dummy, we get

CC
′ + EE

′dt = CC
′ + EE

′ +
(

−EE′
)

(1− dt)

If the left side is OK, the right side isn’t a permitted parameterization.

An alternative (which is what the GARCH instruction does) is to replace CC
′

with

(C+ Edt) (C+ Edt)
′

where E is (like C) a lower triangular matrix. This enforces positive-

definiteness, but doesn’t require that the dummy add a positive semi-definite

increment to the variance. Because the adjustments are made before “squar-

ing”, the model isn’t sensitive to the choice of representation for the dummy.

As an illustration of XREGRESSORS, we will add a “Monday” dummy to the

variance model for the three stock market returns. With a daily CALENDAR, it’s

easy to create that with

set monday = %weekday(t)==1

%WEEKDAY maps the entry number to 1 to 7 for Monday to Sunday. We’ll add

this to the standard and BEKK models, while also adding DISTRIB=T to deal

with the fat tails:

6
You can add range parameters like 1988:1 * to the @mvarchtest to restrict the sample.
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garch(model=armeans,asymm,xreg,distrib=t,$

pmethod=simplex,piters=10,method=bfgs)

# monday

garch(model=armeans,mv=bekk,asymm,xreg,distrib=t,$

pmethod=simplex,piters=10,method=bfgs)

# monday

The Monday dummies are generally insignificant (and have what would gener-

ally be seen as the wrong sign). The one place they come in significant is with

the covariance between the SP500 and HS.
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Example 6.1 Multivariate GARCH: Forecasting

This is the example from Section 6.1.

open data hhdata.xls

data(format=xls,org=columns) 1 3720 usxjpn usxfra usxsui $

usxnld usxuk usxbel usxger usxswe usxcan usxita date

*

* This is rescaled to 100.0 compared with data used in the paper. The

* paper also uses local currency/USD, while the data set has USD/local

* currency, so we change the sign on the return.

*
set demret = -100.0*log(usxger/usxger{1})

set gbpret = -100.0*log(usxuk/usxuk{1})

*

* The mean model is a univariate AR on each variable separately.

*
equation demeqn demret

# constant demret{1}

equation gbpeqn gbpret

# constant gbpret{1}

group uniar1 demeqn gbpeqn

*

* Estimate BEKK model with student t errors

*
garch(model=uniar1,mv=bekk,rvectors=rd,hmatrices=hh,distrib=t,$

pmethod=simplex,piters=20,iters=500)

*
@MVGARCHFore(mv=bekk,steps=100) hh rd

*
spgraph(vfields=2,hfields=2)

compute gstart=%regend()-399,gend=%regend()+100

set h11fore gstart gend = hh(t)(1,1)

set h22fore gstart gend = hh(t)(2,2)

set h12fore gstart gend = hh(t)(1,2)/sqrt(h11fore*h22fore)

graph(row=1,col=1,grid=(t==%regend()+1),min=0.0,$

header="Deutsche Mark Volatility")

# h11fore

graph(row=2,col=2,grid=(t==%regend()+1),min=0.0,$

header="British Pound Volatility")

# h22fore

graph(row=2,col=1,grid=(t==%regend()+1),header="Correlation")

# h12fore

spgraph(done)
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Example 6.2 Volatility Impulse Responses

This is the example from Section 6.2.

open data hhdata.xls

data(format=xls,org=columns) 1 3720 usxjpn usxfra usxsui $

usxnld usxuk usxbel usxger usxswe usxcan usxita date

*

* This is rescaled to 100.0 compared with data used in the paper. The

* paper also uses local currency/USD, while the data set has USD/local

* currency, so we change the sign on the return.

*
set demret = -100.0*log(usxger/usxger{1})

set gbpret = -100.0*log(usxuk/usxuk{1})

*

* The mean model is a univariate AR on each variable separately.

*
equation demeqn demret

# constant demret{1}

equation gbpeqn gbpret

# constant gbpret{1}

group uniar1 demeqn gbpeqn

*
garch(model=uniar1,mv=bekk,rvectors=rd,hmatrices=hh,distrib=t,$

pmethod=simplex,piters=20,iters=500)

*

* Transform the BEKK model to its equivalent VECH representation

*
@MVGARCHtoVECH(mv=bekk)

eigen(cvalues=cv) %%vech_a+%%vech_b

disp "Eigenvalues from BEKK-t" *.### cv

*

* VIRF with historical incidents

*
sstats(max) / %if(date==920916,t,0)>>xblackwed $

%if(date==930802,t,0)>>xecpolicy

compute blackwed=fix(xblackwed),ecpolicy=fix(xecpolicy)

*
compute nstep=400

spgraph(vfields=3,hfields=2,footer="Figure 1",$

xlabels=||"1992 Sept 16","1993 Aug 2"||,$

ylabels=||"DEM/USD Variance","Covariance","GBP/USD Variance"||)

*

* Black Wednesday shocks. These are computed using a baseline of the

* estimated volatility state, so they are excess over the predicted

* covariance.

*
compute eps0=rd(blackwed)

compute sigma0=hh(blackwed)

compute shock=%vec(%outerxx(eps0)-sigma0)

*

* This generates responses for the 3 elements of the covariance matrix,

* which will be (in order) the (1,1),(1,2) and (2,2).
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*
dec vect[series] sept92virf(3)

do i=1,3

set sept92virf(i) 1 nstep = 0.0

end do i

*

* Use the VECH representation to compute the VIRF to the original shock.

*
do step=1,nstep

if step==1

compute hvec=%%vech_a*shock

else

compute hvec=(%%vech_a+%%vech_b)*hvec

compute %pt(sept92virf,step,hvec)

end do step

do i=1,3

graph(column=1,row=i,picture="*.###",vticks=5)

# sept92virf(i) 1 nstep

end do i

*

* EC Policy Change shock.

*
compute eps0=rd(ecpolicy)

compute sigma0=hh(ecpolicy)

compute shock=%vec(%outerxx(eps0)-sigma0)

dec vect[series] aug93virf(3)

do i=1,3

set aug93virf(i) 1 nstep = 0.0

end do i

*
do step=1,nstep

if step==1

compute hvec=%%vech_a*shock

else

compute hvec=(%%vech_a+%%vech_b)*hvec

compute %pt(aug93virf,step,hvec)

end do step

do i=1,3

graph(column=2,row=i,picture="*.###",vticks=5)

# aug93virf(i) 1 nstep

end do i

spgraph(done)
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Example 6.3 Multivariate GARCH with Asymmetry or

Variance Dummies

This is the example from Section 6.3.

open data mhcdata.xls

cal(d) 1986:1:1

data(format=xls,org=columns) 1 3724 rnk rhs rsp

*

* We scale up the original data by 100.0

*
set rsp = rsp*100.0

set rnk = rnk*100.0

set rhs = rhs*100.0

*

* Define univariate AR’s for each dependent variable

*
equation speq rsp

# constant rsp{1}

equation nkeq rnk

# constant rnk{1}

equation hseq rhs

# constant rhs{1}

*
group armeans speq nkeq hseq

*

* CC models

*
garch(model=armeans,mv=cc,asymm)

@regcrits(title="CC Model with Asymmetry")

garch(model=armeans,mv=cc,variances=varma,asymm,$

pmethod=simplex,piters=10,method=bfgs)

@regcrits(title="CC-VARMA Model with Asymmetry")

*

* BEKK model

*
garch(model=armeans,mv=bekk,asymm,$

pmethod=simplex,piters=10,method=bfgs)

@regcrits(title="BEKK Model with Asymmetry")

*

* Standard GARCH

*
garch(model=armeans,asymm,rvectors=rd,hmatrices=hh,$

pmethod=simplex,piters=10,method=bfgs)

@regcrits(title="Standard GARCH with Asymmetry")

*

* Multivariate diagnostics

*
dec vect[series] rstd(%nvar)

do time=%regstart(),%regend()

eigen(scale) hh(time) * eigfac

compute %pt(rstd,time,%solve(eigfac,rd(time)))

end do time
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*
@mvqstat(lags=10)

# rstd

@mvarchtest

# rstd

@mvjb(factor=%identity(3)) rstd

*

* Standard GARCH with shift dummy

*
set monday = %weekday(t)==1

garch(model=armeans,asymm,xreg,distrib=t,$

pmethod=simplex,piters=10,method=bfgs)

# monday

*

* BEKK GARCH with shift dummy

*
garch(model=armeans,mv=bekk,asymm,xreg,distrib=t,$

pmethod=simplex,piters=10,method=bfgs)

# monday


