
Chapter 4

Nonlinear Regression: Introduction to

Metropolis-Hastings

4.1 Theory

As mentioned earlier, the linear model with Normal errors has two very conve-

nient (and closely related) properties:

1. It has a set of sufficient statistics

2. The likelihood can be inverted easily to form a kernel for the density of

the parameters.

Because it has that set of sufficient statistics (the crossproduct matrix), you can

do even millions of simulations in a very modest amount of time, because each

simulation involves a set of calculations with matrices of modest size (number

of regressors). There aren’t any calculations the size of the data set in the inner

loop.

In general, a non-linear regression model has neither of these nice properties.

If

yi = f(Xi, γ) + εi, εi ∼ N
(

0, h−1
)

i.i.d.

the log likelihood is

−
N

2
log 2π +

N

2
log h−

h

2

N
∑

i=1

(yi − f (Xi, γ))
2

While that last term has a Y
′
Y component, that won’t help much. Now, there

is a class of special cases which at least has sufficient statistics. These are

non-linear in parameters (NLIP) models. This is short for “linear in the data,

non-linear in the parameters”. For these models,

f(Xi, γ) = Xig(γ)

The final term in the log-likelihood for this is now:

−
h

2

N
∑

i=1

(yi −Xig (γ))
2 = −

h

2

(

Y
′
Y − 2Y′

Xg (γ) + g (γ)′X′
Xg (γ)

)

so we have the same set of sufficient statistics as before. This can be a big time

saver if it’s available.

50

Nonlinear Regression: Introduction to Metropolis-Hastings 51

The lack of sufficient statistics mainly affects the time required to do a certain

number of simulations. The lack of an easily identifiable kernel for the poste-

rior is a more serious problem. We were able to do Gibbs sampling in the linear

model with independent Normal-gamma prior because we had that. Assume

that we again have an independent Normal-gamma prior.

p(γ, h) ∝ exp

(

−
1

2
(γ − γ)′H (γ − γ)

)

× h(v/2)−1 exp

(

−
hν

2s−2

)

The conditional posterior for h|γ is exactly the same as before:

p(h|γ, y) ∝ h(N+v)/2−1 exp

(

−
h

2

(

νs2 + ε (γ)′ ε (γ)
)

)

where

ε(γ) = y − f (X, γ)

The difference is that, unless we have an NLIP model, we’ll have to run a loop

over observations to compute ε (γ)′ ε (γ).

It’s γ|h that causes the problems. Getting rid of factors that don’t depend upon

γ, we get

p(γ|h, y) ∝ exp

(

−
1

2
(γ − γ)′H (γ − γ)

)

exp

(

−
h

2
ε (γ)′ ε (γ)

)

(4.1)

While this can be computed easily enough (again, requiring a loop over obser-

vations to evaluate the second factor), it can’t be written in the form of a known

density.

Unlike the Gibbs sampler in the linear model, anything we do here is going to

require at least some ingenuity or at least some experimentation. The most

straightforward way to handle this is to use a more advanced form of MCMC

called Metropolis-Hastings (or more correctly here, Metropolis within Gibbs,

since we’re using this for just part of a Gibbs sampler, with standard methods

taking care of draws for h|γ).

The idea behind this is as follows: suppose that our current draw for γ is called

γ(i−1). We want to generate a new draw γ(i) from p(γ|h, y), but there’s no known

procedure for drawing from that. Instead, let’s choose γ∗ from a more conve-

nient density q(γ) (often called the proposal density). We can evaluate both the

density p(γ∗|h, y) and the density q(γ∗). Compute

α =
p(γ∗|h, y)

p(γ(i−1)|h, y)
×

q
(

γ(i−1)
)

q (γ∗)
(4.2)

With probability α, we accept the new draw and make γ(i) = γ∗, otherwise we

stay with our previous value and make γ(i) = γ(i−1). Note that it’s possible to

have α > 1, in which case, we just accept the new draw.

The first ratio in (4.2) makes perfect sense. We want, as much as possible, to

have draws where the posterior density is high, and not where it’s low. The

Nonlinear Regression: Introduction to Metropolis-Hastings 52

second counterweights (notice that it’s the ratio in the opposite order) for the

probability of drawing a given value. Another way of looking at the ratio is

α =
p(γ∗|h, y)/q (γ∗)

p(γ(i−1)|h, y)/q (γ(i−1))

p/q is a measure of the relative desirability of a draw. The ones that really

give us a strong “move” signal are where the target density (p) is high and

the proposal density (q) is low; we may not see those again, so when we get

a chance we should move. Conversely, if p is low and q is high, we might as

well stay put; we may revisit that one at a later time. Note that 1/α is the

probability of moving back if we took γ∗and drew γ(i−1) as a candidate.

This is known as Independence Chain M-H, where the candidates are drawn

independently of the previous value. In greater generality, suppose that pro-

posal density is dependent upon the previous value γ(i−1): q
(

γ∗|γ(i−1)
)

. In that

case α takes the form:

α =
p(γ∗|h, y)/q

(

γ∗|γ(i−1)
)

p(γ(i−1)|h, y)/q (γ(i−1)|γ∗)

Note that if it’s easier to go from γ(i−1) → γ∗ than vice versa, (top q bigger

than bottom q), we’ll tend to stay put. A special case of this is Random Walk

M-H, where the proposal density is centered at γ(i−1). When q
(

γ∗|γ(i−1)
)

=

q
(

γ(i−1)|γ∗
)

, which will be the case for multivariate Normal or t with a covari-

ance matrix that’s independent of γ, the formula for α simplifies to

α =
p(γ∗|h, y)

p(γ(i−1)|h, y)

We can just as easily move from one to the other, so we don’t need the counter-

weighting for the draw density.

A few things to note about this:

1. We don’t need p and q to be complete densities. Because they always are

used in ratios, any common constants of integration will drop out.

2. Keep the calculations in logs as long as possible. In high dimensional

problems, it’s possible for the pieces to over- and underflow.

In implementing a chain, we need to decide upon the method and the proposal

density. It’s often easier to pick a reasonable proposal for Independence Chain

M-H. With that, we’re trying to pick from a density which comes fairly close to

mimicking the shape of the posterior itself. If we have a respectable amount

of data, we can use the asymptotic theory of non-linear regression to get an

approximate density for γ as

γ ∼ N



γ̂, ŝ2

(

N
∑

i=1

∂f(Xi, γ)

∂γ

′∂f(Xi, γ)

∂γ

)−1


 (4.3)

Nonlinear Regression: Introduction to Metropolis-Hastings 53

which would be the output from a conventional non-linear least squares opti-

mization. If the prior is fairly flat, we can get by with that. If not, we can

combine this with the posterior using the Normal prior-Normal data to get an

approximate Normal posterior. If the prior might very well dominate the data

for some parameters, you may need to maximize the posterior (4.1) directly

(you would maximize the log of this) and take a Normal approximation from

that optimization.

One of these Normal approximations might work just fine, but it’s often a good

idea to “fatten” up the tails a bit. If we look at the desirability measure:

p(γ∗|h, y)/q (γ∗)

it can be quite high even for candidates with a fairly low value of p, if q is

relatively lower than that. Normals have fairly thin tails, so if we manage to

stumble across a tail γ where the p function is fatter than the Normal, we can

stay at that one spot for quite a while. Having overly thick tails in the proposal

density isn’t as big a problem because, if the tails of q are too fat, there will be

places to which we won’t move easily, but we won’t get stuck anywhere.

However you do it, it’s important to monitor how frequently you accept new

draws. If that’s low (below 20%), you need a better proposal density. With

Independence Chain M-H, it’s hard for an acceptance ratio to be too high. After

all, if you hit the posterior density spot on (q = p), α = 1 for all draws.

Independence Chain is generally the better procedure if the posterior is fairly

well-behaved, in the sense that it has a single maximum and generally falls off

from there in all directions. If the posterior is multi-modal, or has directions in

which it falls off very slowly, it won’t work as well, since a single (convenient)

density will have a hard time matching those features. That’s where Random

Walk M-H becomes useful. Picking the proposal density there, however, is quite

a bit more challenging. You don’t want to be drawing from a distribution based

upon the overall spread of the posterior. If you do that, then you won’t really

have a chance to explore those odd shapes in the posterior. Once you locate one,

if you use too wide a spread, the next draw will likely be rejected (since you’re in

a small region with a high posterior); if it’s accepted, you’ll probably be moving

somewhere else, perhaps with a small probability of going back. There’s quite

a bit more tuning involved with this, since a low acceptance rate can mean that

you need to spread your draw more (you’ve found one mode and can’t move off

of it because your draws don’t span to the other one), or can mean that you

need to spread your draw less. With Random Walk M-H, a high acceptance rate

is also not good. It probably means you have too small a spread and are not

moving very far. Somewhere in the range of .25 to.50 is generally best.

The same matrix as generated above in (4.3) can be useful to give some idea of

the relative scales of the parameters. Taking the diagonal elements only (and

possibly scaling down a bit) isn’t a bad starting place.

Nonlinear Regression: Introduction to Metropolis-Hastings 54

4.2 Calculations

Our model is

yi = f(Xi, γ) + εi, εi ∼ N
(

0, h−1
)

i.i.d.

For purposes of drawing from the posterior for γ, it’s most convenient to have

γ represented as a VECTOR. For writing the f function, however, it’s usually

most convenient to use descriptive variables (alpha, sigma, etc.). That makes

it easier to change the representation, by adding or deleting parameters. For-

tunately, it’s relatively easy to switch between the two.

The example used is of a CES production function:

yi = γ1 +
(

γ2x
γ4
1i + γ3x

γ4
2i

)1/γ4
+ εi

We’ll set up the function using the descriptive variable names gamma1, etc.

nonlin(parmset=cesparms) gamma1 gamma2 gamma3 gamma4

*
compute gamma4=1.0

compute gamma1=0.0

compute gamma2=gamma3=0.5

*
frml ces y = gamma1+(gamma2*x1ˆgamma4+gamma3*x2ˆgamma4)ˆ(1/gamma4)

nlls(frml=ces,parmset=cesparms)

To estimate this model successfully with NLLS, we need a positive guess value

for γ4 (otherwise the function can’t even be computed) and for γ2 or γ3 (other-

wise, γ4 drops out of the function). Note that we used a named PARMSET. This

is important so we can set the values of all the parameters from a VECTOR.

The setup for the prior is the same (other than numbers) as it is for the linear

model:

compute s2prior=1.0/10.0

compute nuprior=12.0

*
compute [vector] bprior=||1.0,1.0,1.0,1.0||

compute [symm] vprior=.25*%identity(4)

compute [symm] hprior =inv(vprior)

We’ll again start at the least-squares estimates and set up a SERIES[VECT]

and SERIES to collect the draws. In this example, we’re doing 25000 draws

with 5000 burn-ins. We have a new addition to this: we also need to keep a

count of the number of acceptances.

Nonlinear Regression: Introduction to Metropolis-Hastings 55

compute bdraw =%beta

compute s2draw=%seesq

compute nburn =5000

compute ndraws=25000

dec series[vect] bgibbs

dec series hgibbs

gset bgibbs 1 ndraws = %zeros(%nreg,1)

set hgibbs 1 ndraws = 0.0

compute accept=0

Example 4.1 does Random Walk M-H. This is using a Normal with mean zero

and covariance matrix taken from NLLS as the increment in the proposal den-

sity. Since the covariance matrix is fixed across draws, we take its Choleski

factorization outside the loop. (Given the level of effort in the other calcula-

tions, this doesn’t matter that much, but it’s a simple enough optimization).

compute fxx=%decomp(%seesq*%xx)

With the set of options used in NLLS, %XX does not have the scale factor for

the residual variance incorporated; hence the scaling by %SEESQ. If you use

ROBUSTERRORS on NLLS, you would skip that, because the relationship with

the residuals is built into the calculation.

The draw for the precision of the residuals is pretty much the same as with the

linear model, other than the need to calculate the sum of squared residuals.

Note the use of the %PARMSPOKE function. This is why we assigned a named

PARMSET to the parameters. See this chapter’s Tips and Tricks (Section 4.3) for

more on this function.

When you use a FRML like CES in an expression, it does not include the depen-

dent variable – it computes the right-hand side of y = f(X, γ), not the residuals.

compute %parmspoke(cesparms,bdraw)

sstats / (y-ces(t))ˆ2>>rssbeta

compute rssplus=nuprior*s2prior+rssbeta

compute hdraw =%ranchisqr(nuprior+%nobs)/rssplus

We now draw a candidate based upon the previous value of bdraw and evaluate

the sum of squared residuals at that.

compute btest=bdraw+%ranmvnormal(fxx)

compute %parmspoke(cesparms,btest)

sstats / (y-ces(t))ˆ2>>rsstest

We next compute the (logs) of the posterior densities and exp up to get the

acceptance probability.

compute logptest=-.5*hdraw*rsstest-.5*%qform(hprior,btest-bprior)

compute logplast=-.5*hdraw*rssbeta-.5*%qform(hprior,bdraw-bprior)

compute alpha =exp(logptest-logplast)

Nonlinear Regression: Introduction to Metropolis-Hastings 56

This is the code for the randomized acceptance. If we accept, we replace bdraw

with the test vector and increment accept.

if alpha>1.0.or.%uniform(0.0,1.0)<alpha

compute bdraw=btest,accept=accept+1

The remainder of the loop is the same as with the linear model, as is the post-

processing for finding the mean and variance of the posterior. The one addition

is that we need to display the fraction of acceptances:

disp "Acceptance Rate" accept/(ndraws+nburn+1.0)

Independence Chain M-H has the additional requirement that we compute the

(kernel) of the proposal density. Fortunately, RATS is set up to handle that

automatically. If you arrange the calculation so the draw is done in a single

function call, you can fetch the log of the kernel of that previous draw using

the function %RANLOGKERNEL().

Since %RANLOGKERNEL() only has the correct value until the next set of draws,

we need to keep track of it in case we hang onto the previous draw. If your

initializer for the Gibbs sampler is the mean of your proposal density (from a

Normal or t), you can start with the log kernel of 0.

The setup is the same until we get to:

compute fxx =%decomp(%seesq*%xx)

compute nuxx =10

compute logqlast=0.0

We’re fattening the tails by using a t with 10 degrees of freedom. logqlast

will be used to hold the q value for the last draw; we’ll use logqtest for the q
value for the test draw.

Most of the internals of the draw loop are the same. compute btest is differ-

ent because it is centered at %beta rather than bdraw; we add the compute

logqtest to grab the log kernel while it’s available; alpha is computed with

the more complicated expression and, if we accept, we hang onto the value of

log q.

compute btest=%beta+%ranmvt(fxx,nuxx)

compute logqtest=%ranlogkernel()

compute %parmspoke(cesparms,btest)

sstats / (y-ces(t))ˆ2>>rsstest

compute logptest=-.5*hdraw*rsstest-.5*%qform(hprior,btest-bprior)

compute logplast=-.5*hdraw*rssbeta-.5*%qform(hprior,bdraw-bprior)

compute alpha =exp(logptest-logplast+logqlast-logqtest)

if alpha>1.0.or.%uniform(0.0,1.0)<alpha {

compute bdraw=btest,accept=accept+1

compute logqlast=logqtest

}

Nonlinear Regression: Introduction to Metropolis-Hastings 57

4.3 RATS Tips and Tricks

Using PARMSETS

A PARMSET is an object which organizes a set of parameters for non-linear esti-

mation. In most cases where you do non-linear optimization (with instructions

like NLLS or MAXIMIZE), you don’t need a “named” parameter set. The NONLIN

instruction without a PARMSET option creates the default unnamed parameter

set which is what will be used on the non-linear estimation instruction, if it

doesn’t have a PARMSET option:

nonlin gamma1 gamma2 gamma3 gamma4

nlls(frml=ces)

The named PARMSET is useful when you need to be able to work with the pa-

rameters as a VECTOR. The functions for this are %PARMSPEEK(parmset) and

%PARMSPOKE(parmset,vector). The first of these returns the current set-

tings as a VECTOR; the second (which we used in this chapter), resets the pa-

rameters based upon the value in the VECTOR.

nonlin(parmset=cesparms) gamma1 gamma2 gamma3 gamma4

compute %parmspoke(cesparms,||0.0,0.5,0.5,1.0||)

compute gamma4=0.7

compute v=%parmspeek(cesparms)

Here, the %PARMSPOKE will make γ1 = 0, γ2 = .5, etc. At the end, V will be

[0, .5, .5, .7].

PARMSETS are also helpful if you would like to break a larger parameter set

up into more manageable pieces. The following defines one PARMSET for the

parameters governing the mean and another for the GARCH parameters. Those

are “added” (combined) on the MAXIMIZE instruction to form the full parameter

set for the estimation:

linreg us3mo

constant us3mo{1}

frml(lastreg,vector=ar1) meanf

nonlin(parmset=meanparms) ar1

*
nonlin(parmset=garchparms) gamma alpha beta lambda

maximize(parmset=meanparms+garchparms) logl 2 *

Nonlinear Regression: Introduction to Metropolis-Hastings 58

The instruction FIND

In Example 4.2, we do independence M-H using the coefficients and a (fattened

up) asymptotic covariance matrix from an NLLS to provide the mean and co-

variance matrix for the proposal density. That works reasonably well since

the prior is fairly loose; as a result, the posterior density (which is what we’re

trying to match) is dominated by the data.

Suppose instead that we have a more informative prior. The NLLS information

might no longer be a good match for the posterior. What we can do instead

is to find the posterior mode: the coefficient vector which maximizes the (log)

posterior density. We can use that, plus the Hessian from that optimization

(possibly with some fattening) to provide a proposal density which might bet-

ter match the posterior. To compute the log posterior density, start by using

the “evaluation” method for the instruction (see appendix A). For NLLS, this is

METHOD=EVALUATE. This will give you the log likelihood. Add to that the log

density for the prior. If the prior is in several independent pieces, you’ll have

to add each of those in. This code fragment estimates the posterior mode for

the model used in this chapter. Note that you need to use the METHOD=BFGS

and STDERRS options on the FIND if you want to get the Hessian. (The default

estimation method for FIND is METHOD=SIMPLEX, which is derivative-free).

compute [vector] bprior=||1.0,1.0,1.0,0.5||

compute [symm] vprior=.09*%identity(4)

compute [symm] hprior =inv(vprior)

*
declare real logpostdensity

find(parmset=cesparms,method=bfgs,stderrs) max logpostdensity

nlls(frml=ces,parmset=cesparms,method=evaluate,noprint)

compute logpostdensity=%logl+$

%logdensity(vprior,%parmspeek(cesparms))

end find

Nonlinear Regression: Introduction to Metropolis-Hastings 59

Example 4.1 Non-linear Regression: Random Walk MH

open data cesdata.xls

data(format=xls,org=columns) 1 123 y x1 x2

*
nonlin(parmset=cesparms) gamma1 gamma2 gamma3 gamma4

*
compute gamma4=1.0

compute gamma1=0.0

compute gamma2=gamma3=0.5

*
frml ces y = gamma1+(gamma2*x1ˆgamma4+gamma3*x2ˆgamma4)ˆ(1.0/gamma4)

*
nlls(frml=ces,parmset=cesparms)

*

* Prior for variance.

*
compute s2prior=1.0/10.0

compute nuprior=12.0

*

* Prior mean and variance. Because the variance of the prior is now

* independent of the variance of the residuals, the <<hprior>> can be

* taken by just inverting the <<vprior>> without the degrees of freedom

* adjustment.

*
compute [vector] bprior=||1.0,1.0,1.0,1.0||

compute [symm] vprior=.25*%identity(4)

compute [symm] hprior =inv(vprior)

*
compute bdraw =%beta

compute s2draw=%seesq

*
compute nburn =5000

compute ndraws=25000

*
dec series[vect] bgibbs

dec series hgibbs

gset bgibbs 1 ndraws = %zeros(%nreg,1)

set hgibbs 1 ndraws = 0.0

compute accept=0

*
compute fxx=%decomp(%seesq*%xx)

do draw=-nburn,ndraws

*

* Draw residual precision conditional on current bdraw

*
compute %parmspoke(cesparms,bdraw)

sstats / (y-ces(t))ˆ2>>rssbeta

compute rssplus=nuprior*s2prior+rssbeta

compute hdraw =%ranchisqr(nuprior+%nobs)/rssplus

*

* Random walk MC

*
compute btest=bdraw+%ranmvnormal(fxx)

Nonlinear Regression: Introduction to Metropolis-Hastings 60

compute %parmspoke(cesparms,btest)

sstats / (y-ces(t))ˆ2>>rsstest

compute logptest=-.5*hdraw*rsstest-.5*%qform(hprior,btest-bprior)

compute logplast=-.5*hdraw*rssbeta-.5*%qform(hprior,bdraw-bprior)

compute alpha =exp(logptest-logplast)

if alpha>1.0.or.%uniform(0.0,1.0)<alpha

compute bdraw=btest,accept=accept+1

if draw<=0

next

*

* Do the bookkeeping here.

*
compute bgibbs(draw)=bdraw

compute hgibbs(draw)=hdraw

end do draw

*
disp "Acceptance Rate" accept/(ndraws+nburn+1.0)

*
@mcmcpostproc(ndraws=ndraws,mean=bmean,stderrs=bstderrs,$

cd=bcd,nse=bnse) bgibbs

report(action=define)

report(atrow=1,atcol=1,align=center) "Variable" "Coeff" "Std Error" $

"NSE" "CD"

do i=1,%nreg

report(row=new,atcol=1) "Gamma"+i bmean(i) bstderrs(i) bnse(i) bcd(i)

end do i

report(action=format,atcol=2,tocol=3,picture="*.###")

report(action=format,atcol=4,picture="*.##")

report(action=show)

Example 4.2 Non-linear Regression: Independence MH

open data cesdata.xls

data(format=xls,org=columns) 1 123 y x1 x2

*
nonlin(parmset=cesparms) gamma1 gamma2 gamma3 gamma4

*
compute gamma4=1.0

compute gamma1=0.0

compute gamma2=gamma3=0.5

*
frml ces y = gamma1+(gamma2*x1ˆgamma4+gamma3*x2ˆgamma4)ˆ(1.0/gamma4)

*
nlls(frml=ces,parmset=cesparms)

*

* Prior for variance.

*
compute s2prior=1.0/10.0

compute nuprior=12.0

*

* Prior mean and variance. Because the variance of the prior is now

* independent of the variance of the residuals, the <<hprior>> can be

Nonlinear Regression: Introduction to Metropolis-Hastings 61

* taken by just inverting the <<vprior>> without the degrees of freedom

* adjustment.

*
compute [vector] bprior=||1.0,1.0,1.0,1.0||

compute [symm] vprior=.25*%identity(4)

compute [symm] hprior =inv(vprior)

*
compute bdraw =%beta

compute s2draw=%seesq

*
compute nburn =5000

compute ndraws=25000

*
dec series[vect] bgibbs

dec series hgibbs

gset bgibbs 1 ndraws = %zeros(%nreg,1)

set hgibbs 1 ndraws = 0.0

compute accept=0

*

* Draw from multivariate t centered at the NLLS estimates. In order to do

* this most conveniently, we set up a VECTOR into which we can put the

* draws from the standardized multivariate t.

*
compute fxx =%decomp(%seesq*%xx)

compute nuxx=10

dec vector tdraw(%nreg)

*

* Since we’re starting at %BETA, the kernel of the proposal density is 1.

*
compute logqlast=0.0

*
do draw=-nburn,ndraws

*

* Draw residual precision conditional on current bdraw

*
compute %parmspoke(cesparms,bdraw)

sstats / (y-ces(t))ˆ2>>rssbeta

compute rssplus=nuprior*s2prior+rssbeta

compute hdraw =%ranchisqr(nuprior+%nobs)/rssplus

*

* Independence chain MC

*
compute btest=%beta+%ranmvt(fxx,nuxx)

compute logqtest=%ranlogkernel()

compute %parmspoke(cesparms,btest)

sstats / (y-ces(t))ˆ2>>rsstest

compute logptest=-.5*hdraw*rsstest-.5*%qform(hprior,btest-bprior)

compute logplast=-.5*hdraw*rssbeta-.5*%qform(hprior,bdraw-bprior)

compute alpha =exp(logptest-logplast+logqlast-logqtest)

if alpha>1.0.or.%uniform(0.0,1.0)<alpha {

compute bdraw=btest,accept=accept+1

compute logqlast=logqtest

}

if draw<=0

Nonlinear Regression: Introduction to Metropolis-Hastings 62

next

*

* Do the bookkeeping here.

*
compute bgibbs(draw)=bdraw

compute hgibbs(draw)=hdraw

end do draw

*
disp "Acceptance Rate" accept/(ndraws+nburn+1.0)

*
@mcmcpostproc(ndraws=ndraws,mean=bmean,stderrs=bstderrs,$

cd=bcd,nse=bnse) bgibbs

report(action=define)

report(atrow=1,atcol=1,align=center) "Variable" "Coeff" "Std Error" $

"NSE" "CD"

do i=1,%nreg

report(row=new,atcol=1) "Gamma"+i bmean(i) bstderrs(i) bnse(i) bcd(i)

end do i

report(action=format,atcol=2,tocol=3,picture="*.###")

report(action=format,atcol=4,picture="*.##")

report(action=show)

